• Title/Summary/Keyword: island area

Search Result 1,979, Processing Time 0.027 seconds

A Study on the Distribution Characteristic of Urban Surface Temperature and Urban Heat Island Effects (도시 지표면 온도분포 특성 및 열섬완화방안)

  • Do, Hu-Jo;Lee, Jung-Min;Ra, Jung-Hwa
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.611-622
    • /
    • 2007
  • The purpose of this research was to three-criteria landuse-pattern, developing density, NDVI which were related to the heat island and find the distribution characteristic of urban surface temperature and urban heat island effects. The results of this study were as follows. According to the analysis of surface temperatures, the first grade was the outside-city like a mountain and its temperature was less than $12.18^{\circ}C$. The fifth grade was the downtown industrial area and its temperature was more than $23.54^{\circ}C$. It means Daegu-Metropolitan-City has the serious heat-island effect. the results of landuse pattern analysis, in case of fifth and forth grade, city area was occupied over 90% with residential, commercial and industrial areas, but in case of third grade, openspace was occupied over 70%. The results of developing density analysis, the temperature had high correlation with building ratio, road ratio, vegetation ratio and etc. To plan for the decrease of heat island effect needed the extension of green space, decrease of paving, but there was a limit to get the objective method for grade classification because of lacking in the basic data, the research of criteria will be accomplished continuously.

Perineal Reconstruction with the Perineal Perforator Based Island Flap (회음 천공지 기저 도서형 피판을 이용한 회음부 재건)

  • Lee, Hae Min;Kim, Jeong Tae;Hwang, Weon Joong
    • Archives of Plastic Surgery
    • /
    • v.32 no.1
    • /
    • pp.105-109
    • /
    • 2005
  • Perineal area is composed of compact structures of urogenital organs and anus requiring a more sophisticated selection of flap and reconstruction. For achieving better outcome then conventional flap surgery, we use the perineal perforator based island flap for its reconstruction. After locating the perforator by Doppler, the flaps were designed according to the defect or expected vaginal orifice. The flaps were elevated bilaterally as island pattern. Finally defect or neovagina was reconstructed with inconspicious linear scar hidden in the inguinal crease. Five cases were performed with the perineal perforator based island flap. There were 3 cases of vulvar cancer, 1 case of transsexualism, and 1 case of ambiguous genitalia because of congenital adrenal hyperplasia. Operative results were satisfactory with good contouring and less prominent donor scar, when they were compared with other flap reconstructions such as latissimus dorsi perforator flap, groin flap, gracilis myocutaneous flap etc. The perineal perforator based island flap is highly recommended with the advantages of easy flap elevation, good rotation arc, and appropriate flap thickness for contouring. Compared with other conventional flaps, it can be selected as a good option for moderate defect of perineal area.

Analysis of impact of land cover change on runoff through several Streams in Jeju Island, Korea (토지피복도 변화에 따른 제주도 주요 상시하천의 유출변화 분석)

  • Yang, Sung-Kee;Jung, Woo-Yeol;Han, Woong-Ku
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.1033-1036
    • /
    • 2010
  • Since Jeju island has depended a water resource on the underground water because of a poor development of the surface flow, Jeju island is in need of the surface resource development to prevent the future shortage of the underground water due to excessive development and use of it. The study shows that the SWAT model(continuous rainfall-runoff model) is applied to estimate the outflow in the drainage watershed area, where it has been urbanized through the change of the land, such as a tourism development, cultivation, housing, and impervious layer road development. Near watershed area in Jeju island, weather and topographical SWAT input data were collected, and compared the outflow change of past and present.

  • PDF

The Effectiveness of Roof Planting for Reducing Urban Heat Island Phenomenon

  • Kobayashi Takahiro;Gotoh Keinosuke;Yoshioka Ryouhei;Tanaka Yoshiki
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.533-536
    • /
    • 2004
  • Presently, heat island phenomenon, leading towards global warming, is one of the major environmental problems. As a solution of this problem, roof and surface wall planting is considered to be effective. Accordingly, the objective of this study is to examine the effectiveness of roof planting in reducing the heat island phenomenon. The results of the study show that, planted area of the observed house roof had lower average temperature, in between $l5-20^{\circ}C,$ in comparison with that of the unplanted area of the roof.

  • PDF

An Analysis on the Less Favored Condition of Fishing Village in Korean Island Regions using Census of Agriculture, Forestry and Fisheries (도서지역 어촌의 조건불리성 분석: 농림어업총조사 자료를 이용하여)

  • Kim, Bong-Tae
    • The Journal of Fisheries Business Administration
    • /
    • v.48 no.4
    • /
    • pp.11-25
    • /
    • 2017
  • The purpose of the study is to analyze the status and trend of less favored condition of fishing village in Korean island regions using the census of agriculture, forestry and fisheries. The less favored condition was measured as the difference in accessibility to major services and in fishery sales and resident infrastructure, applying the difference-in-difference method and propensity score matching method respectively. The result shows that access to major services has improved in island area between 2010 and 2015, implying that related policies such as the island comprehensive development project have been successful to some extent. However, some educational facilities, cultural facilities, and health facilities still have low inaccessibility and fishery sales are also significantly lower than in general area. This suggests that it is necessary to maintain related policies like the direct payment of fisheries.

Stabilization of Body Bias Control in SOI Devices by Adopting Si Film Island (SOI 소자에서의 바디 전압 안정화를 위한 실리콘 필름 Island 구조)

  • Chung, In-Young;Lee, Jong-Ho;Park, Young-June;Min, Hong-Shick
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.100-106
    • /
    • 1999
  • A new IBC(Island Body Contact) structure is introduced to SOI CMOS VLSI for stabilizing the body potential of the MOSFET without the additional area consumption. The improvement of the body contact effect is achieved by reducing the body resistance and the area is saved as the bodies of the MOSFETs are connected together. Its property as VLSI device is confirmed through the device simulations and the measurement.

  • PDF

A Runoff Simulation Using SWAT Model Depending on Changes to Land Use in Jeju Island (SWAT 모형에 의한 제주도 외도유역의 토지이용변화에 따른 유출량 산정)

  • Han, Woong-Ku;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1057-1063
    • /
    • 2009
  • Since Jeju island has depended a water resource on the underground water because of a poor development of the surface flow, Jeju island is in need of the surface resource development to prevent the future shortage of the underground water due to excessive development and use of it. The study shows that the SWAT model(continuous rainfall-runoff model) is applied to estimate the outflow in the drainage watershed area, where it has been urbanized through the change of the land, such as a tourism development, cultivation, housing, and impervious layer road development. Near Oaedo watershed area in Jeju island, weather and topographical SWAT input data were collected, and compared the outflow change of past and present.

Temporal Changes in Gravel Beach Morphology of Dokdo Island Using Aerial Photos and Ground-based LiDAR Data (항공사진 및 지상라이다를 활용한 독도 자갈해빈의 시계열적 변화분석)

  • Kang, Ji-Hyun;Kim, Hye-jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.45-57
    • /
    • 2021
  • In this study, the changes in morphology of Dokdo's gravel beach and its responses due to a storm event were analyzed using the aerial photos and 3D LiDAR data obtained during an ecosystem survey of the Dokdo in 2020. Dongdo Island's gravel beach, shown by aerial photo analysis, increased in area due to sedimentation after the construction of a dock, but there was no more significant changes in area after having grown to Sutdolbawi inside the dock. The changes in volume of the gravel beach were indicated based on 3D data acquired in May and November 2020. A strong typhoon that passed in September, 2002, caused erosion on the backshore and sedimentation on the foreshore and formed the berm by about 1.5 to 2 m high. The analysis showed that the sedimentation was 94.76 m3 in volume and 329 m2 in area and the erosion was 250.75 m3 in volume and 603m2 in area, which suggested that the overall change of the gravel beach was erosion. The changes in the morphology of the gravel beach on Seodo Island occurred with the seasons along with the changes in area. In addition, berms of different altitudes appeared on the southern and northern sides of the spit, which was also estimated to have formed by the seasonal current direction and wave energy.

Magnetotelluric surveys from mid-mountain area of Jeju Island for evaluating possible structures for deep-seated geothermal energy (심부 지열에너지 개발 가능성 파악을 위한 제주도 증산간 지역에서의 MT 탐사)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.434-437
    • /
    • 2006
  • Though numerous drilling has been performed in Jeju Island for development of ground water, the wells are mostly located along the coast lines or at low altitude area, and can hardly be found on the mid-mountain area. Two-dimensional magnetotelluric (MT) surveys have been carried out to cover the lack of geological Informal ion on the mid-mountain area and to figure out any possible structures or evidences for deep geothermal energy remained. Two-dimensional (2-D) inversion of MT data for four survey lines surrounding the Halla mountain show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsol idated sedimentary layer. And they also show a conductive anomaly extending to more than 2km depth at the central part of each survey lines, which can possibly be related with old volcanic activities during the formation of Halla Mt.. Further seological/geophysical investigations should be followed.

  • PDF

Movement of the Silla-the Tang army and Baekje military deployment (나(羅)·당(唐) 군의 이동과 백제군 배비 - 서기 660년 -)

  • Yoon, Il-Young
    • Journal of National Security and Military Science
    • /
    • s.13
    • /
    • pp.137-658
    • /
    • 2016
  • 1. Movement of the leaders of the Silla army The leaders of the Silla army traveled from Gyeongju(경주) to Icheon (이천), Deokjeokdo(덕적도) Island, and Hwangsanwon(황산원) during the period of the Against Baekje(백제) War that began in 660. Movement route between Gyeongju and Icheon : Gyeongju(경주)-Daegu(대구)-Gumi(구미)-Gimcheon(김천)-Chupungryeong(추풍령)-Geumdol Fortress(금돌성)-Boeun(보은)-Jincheon(진천)-Juksan(죽산)-Bubal-eup(부발읍) Movement route between Bubal-eup and Deokjeokdo Island : Bubal-eup(부발읍)-Ipo(이포) Ferry-Haengju(행주) Ferry-Palmido (팔미도) Island-Seonjaedo(선재도) Island-Yeongheungdo(영흥도) Island-Pido(피도) Island-Soyado(소야도) Island-Deokjeokdo(덕적도) Island Movement route between Deokjeokdo Island and Hwangsan: Deokjeokdo(덕적도) Island-Danghangpo(당항포)-Jincheon(진천)-Boeun (보은)-Okcheon(옥천)-Geumsan(금산)-Tanhyeon(탄현)-Hwangsan (황산)-Ganggyeong(강경)-Buyeo(부여) 2. Movement of the combat units of the Silla army Jincheon area : 4,325 persons of the Geupdang unit(急幢) and 611 persons of the Kaegeumdang unit(罽衿幢) were deployed. These units moved from Jincheon to Cheongju, Yeongi, and Gongju, and contained Ungjin Fortress(熊津城) (6,650 Baekje troops). Boeun area : 4,763 persons of the Daedang(大唐) unit, 3,548 persons of the Hajujeong unit(下州停), 3,017 persons of the Namcheonjeong unit(南川停), and 4,500 persons of the Saseoldang unit(四設幢) were deployed. These units moved from Boeun(보은) to Okcheon(옥천), Geumsan(금산), Tanhyeon,(탄현) and Hwangsan(황산). Geumdol Fortress area : 3,753 persons of the Sangjujeong unit(上州停), 5,762 persons of the Seodang unit(誓幢), 3,753 persons of the Guidang unit(貴幢), and 5,562 persons of the Nangdang uni(郎幢)t were deployed. These units moved from Geumdol Fortress to Hwanggan(황간), Yeongdong(영동), Geumsan(금산), Tanhyeon(탄현), and Hwangsan(황산). Jirye area: 3,017 persons of the Eumrihwajeong unit(音里火停) and 3,017 persons of the Ehwahyejeong unit(伊火兮停) were deployed. These units moved from Jirye(지례) to Juchiryeong(走峙嶺), Mupung (무풍), Muju-eup(무주읍), and Bunam-myeon(부남면) in Muju-gun. Goryeong area: 3,017 persons of the Samryanghwajeong unit(三良火停) and 3,017 persons of the Sosamjeong unit(召參停) were deployed. These units moved from Goryeong(고령) to Geochang(거창), Hamyang(함양), Namwon(남원), Sunchang(순창), and Jeongeup(정읍). 3. Movement of the Tang army Dangjin area(당진 방면) : 1,000 persons were deployed. These units moved from Dangjin(당진) to Myeoncheon(면천), Yesan(예산), and Imjon Fortress(임존성). Garijeo area(가리저 방면) : 1,000 persons were deployed in the Garijeo(加里渚) area. These units moved from Garijeo(가리저) to Myeoncheon(면천), Yesan(예산), and Imjon Fortress(임존성). Geumganggu area(금강구 방면) : 000 persons were deployed. These units moved from Geumganggu(금강구) to Ganggyeong(강경) and Sabi Fortress(사비성). 4. Baekje military deployment Total troops of the Baekje army : There were 60 thousand Baekje troops according to the Old Book of Tang(舊唐書). Troop deployment by the Baekje army: 62,230 persons were deployed in 15 regions: 1,000 in Dangjin(당진), 1,000 in Garijeo(가리저), 6,120 in Imjon Fortress(임존성), 1,120 in Namjam Fortress(남잠성), 1,350 in Dooryangyun Fortress(두량윤성), 870 in Wangheungsajam Fortress(왕흥사잠성), 6,650 in Ungjin Fortress(웅진성), 1,120 in Jinhyeon Fortress(진현성), 1,000 in Dooshiwonak(두시원악), 1,000 in Irye Fortress(이례성), 5,000 in Gosaburi Fortress(고사부리성), 5,000 in Gujiha Fortress(구지하성), 3,000 plus 3,000 in Gibeolpo and Yangan(기벌포 양안), 5,000 in Deukan Fortress(득안성), and 20,000 in Sabi Fortress(사비성).

  • PDF