• 제목/요약/키워드: ischemia-reperfusion injury

검색결과 282건 처리시간 0.031초

Protective Effect of Fermented Red Ginseng on a Transient Focal Ischemic Rats

  • Bae, Eun-Ah;Hyun, Yang-Jin;Choo, Min-Kyung;Oh, Jin-Kyung;Ryu, Jong-Hoon;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • 제27권11호
    • /
    • pp.1136-1140
    • /
    • 2004
  • Red ginseng and fermented red ginseng were prepared, and their composition of ginsenosides and antiischemic effect were investigated. When ginseng was steamed at 98-$100{\circ}C$ for 4h and dried for 5h at $60{\circ}C$, and extracted with alcohol, its main components were ginsenoside $Rg_3$ > ginsenoside $Rg_1$> ginsenoside $Rg_2$. When the ginseng was suspended in water and fermented for 5 days by previously cultured Bifidobacterium H-1 and freeze-dried (fermented red ginseng), its main components were compound K > ginsenoside $Rg_3{\geq}$ ginsenoside $Rg_2$. Orally administered red ginseng extract did not protect ischemia-reperfusion brain injury. However, fermented red ginseng significantly protected ischemica-reperfusion brain injury. These results suggest that ginsenoside Rh2 and compound K, which was found to be at a higher content in fermented red ginseng than red ginseng, may improve ischemic brain injury.

Hsp70.1유전자결핍된 마우스에서 허혈 재관류 신장손상에 대한 전처치 운동의 보호효과 (Pre-Exercise Protective Effects Against Renal Ischemic Reperfusion Injury in Hsp 70.1 Knockout Mice)

  • 이진;김원규
    • 생명과학회지
    • /
    • 제20권4호
    • /
    • pp.555-560
    • /
    • 2010
  • 이 연구는 Hsp70.1 유전자가 결핍된 생쥐를 이용하여 운동전처치에 따른 신장허혈재관류손상에서 혈청 크레아틴, 신장에서 CuSOD와 MnSOD의 발현변화를 관찰하는데 그 목적을 두고 있다. 실험동물은 c57/BL6 계 수컷(wild type: WT)과 Hsp70.1 knockout (KO) 생쥐를 정상대조군(n=8), 운동군(n=8), 허혈운동군(n=8) 및 허혈군(n=8)의 4군으로 분류하여 이용하였다. 실험종료 후 마취를 한 후 혈청 creatinine을 분석하기 위해서 신장에서 혈액을 추출하였고, 신장을 적출하여 western blot 으로 eCuSOD와 MnSOD 발현변화를 비교하였다. KO 허혈군에서의 CuSOD, MnSOD는 다른 군에 비해 유의하게 낮게(p<0.001, p<0.05) 발현하였으며, creatinine은 높은(p<0.001)농도로 나타났다. 반면 WT에서는 유의한 변화가 나타나지 않았다. 흥미롭게도 KO허혈운동군에서의 CuSOD, MnSOD는 허혈군보다 뚜렷하게 증가하였으며, creatinine은 허혈군에 비해 현저히 감소(p<0.01)하였다. 이상의 결과를 종합하면 Hsp70은 신장허혈재관류손상에 직접적인 관련이 있음을 추정할 수 있다. 따라서 운동전 처치는 허혈성신장기능저하에 예방할 수 있다고 생각된다.

Protective Effect of Defibrotide on Splanchnic Injury following Ischemia and Reperfusion in Rats

  • Choi, Soo-Ran;Jeong, Ji-Hoon;Song, Jin-Ho;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권2호
    • /
    • pp.85-94
    • /
    • 2006
  • A splanchic artery occlusion for 90 min followed by reperfusion of the mesenteric circulation resulted in a severe form of circulatory shock, characterized by endothelial dysfunction, severe hypotension, marked intestinal tissue injury, and a high mortality rate. The effect of defibrotide, a complex of single-stranded polydeoxyribonucleotides having antithrombotic effect, was investigated in a model of splanchnic artery occlusion (SAO) shock in urethane anesthetized rats. Occlusion of the superior mesenteric artery for 90 min produced a severe shock state, resulting in a fatal outcome within 120 min of reperfusion in many rats. Defibrotide (10 mg/kg body weight) 10 min prior to reperfusion significantly improved mean arterial blood pressure in comparison to vehicle treated rats (p<0.05). Defibrotide treatment also significantly attenuated in the increase of plasma amino nitrogen concentration, intestinal myeloperoxidase activity, intestinal lipid peroxidation, infiltration of neutrophils in intestine and thrombin induced adherence of neutrophils to superior mesentric artery segments. Superoxide anion and hydrogen peroxide production in $1{\mu}M$ formylmethionylleucylphenylalanine (fMLP)-activated PMNs was inhibited by defibrotide in a dose-dependent fashion. Defibrotide effectively scavenged hydrogen peroxide, but not hydroxyl radical. Treatment of SAO rats with defibrotide inhibited tumor necrosis factor-${\alpha}$, and interleukin-1${\beta}$ productions in blood in comparison with untreated rats. These results suggest that defibrotide partly provides beneficial effects by preserving endothelial function, attenuating neutrophil accumulation, and antioxidant in the ischemic reperfused splanchnic circulation

Fimasartan attenuates renal ischemia-reperfusion injury by modulating inflammation-related apoptosis

  • Cho, Jang-Hee;Choi, Soon-Youn;Ryu, Hye-Myung;Oh, Eun-Joo;Yook, Ju-Min;Ahn, Ji-Sun;Jung, Hee-Yeon;Choi, Ji-Young;Park, Sun-Hee;Kim, Chan-Duck;Kim, Yong-Lim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.661-670
    • /
    • 2018
  • Fimasartan, a new angiotensin II receptor antagonist, reduces myocyte damage and stabilizes atherosclerotic plaque through its anti-inflammatory effect in animal studies. We investigated the protective effects of pretreatment with fimasartan on ischemia-reperfusion injury (IRI) in a mouse model of ischemic renal damage. C57BL/6 mice were pretreated with or without 5 (IR-F5) or 10 (IR-F10) mg/kg/day fimasartan for 3 days. Renal ischemia was induced by clamping bilateral renal vascular pedicles for 30 min. Histology, pro-inflammatory cytokines, and apoptosis assays were evaluated 24 h after IRI. Compared to the untreated group, blood urea nitrogen and serum creatinine levels were significantly lower in the IR-F10 group. IR-F10 kidneys showed less tubular necrosis and interstitial fibrosis than untreated kidneys. The expression of F4/80, a macrophage infiltration marker, and tumor necrosis factor $(TNF)-{\alpha}$, decreased in the IR-F10 group. High-dose fimasartan treatment attenuated the upregulation of $TNF-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 in ischemic kidneys. Fewer TUNEL positive cells were observed in IR-F10 compared to control mice. Fimasartan caused a significant decrease in caspase-3 activity and the level of Bax, and increased the Bcl-2 level. Fimasartan preserved renal function and tubular architecture from IRI in a mouse ischemic renal injury model. Fimasartan also attenuated upregulation of inflammatory cytokines and decreased apoptosis of renal tubular cells. Our results suggest that fimasartan inhibited the process of tubular injury by preventing apoptosis induced by the inflammatory pathway.

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli;Wang, Min;Chen, Rongchang;Sun, Xiao;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.642-653
    • /
    • 2021
  • Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.

Ischemia에 의해 유발된 흰쥐의 적출 심장 손상에 대한 Cyclobuxine D의 보호효과 (Effects of Cyclobuxine D on the Derangement Induced by Ischemia and Reperfusion in the Isolated Rat Heart)

  • 이종화;문창규;권준택;조병헌;김유재;김종배;김창호;차영덕;김영석
    • 대한약리학회지
    • /
    • 제26권1호
    • /
    • pp.7-12
    • /
    • 1990
  • 흰쥐로 부터 심장을 적출하여 Langendorff 관류장치에 현수하여 Krebs-Hensleit 영양액으로 분당 12ml속도로 30분간 관류시킨 후 관류 속도를 분당 1ml로 줄여(ischemia)60분간 관류시키면, 적출심장의 수축력이 현저히 감소되었고, resting tension이 현저히 증가되었다. 또 적출심장으로부터 유출되는 관류액의 250nm에서의 UV흡광치는 증가되었으며, 좌심실내의 칼슘의 농도는 대조군보다 상당히 증가되었다. 본 실험에서는 흰쥐에서 항염증작용, 혈압강하 및 서맥 작용, 평활근 및 심장근에서 근이완작용을 나타내는 cyclobuxine D의 ischemia에 의해 유도된 심장손상에 대한 보호효과를 관찰하였다. Cyclobuxine D(100ng/ml)는 ischemia에 의해 유발된 적출심장의 수축력 감소와 resting tension의 증가를 유의하게 억제하였으며, 심장으로부터의 ATP metabolites의 유출과 좌심실내의 칼슘 축적을 억제시켰다. 이상의 결과는 Cyclobuxine D가 ischemia에 의해 유발된 손상으로 부터 심장을 보호할 수 있음을 나타내며, 이는 cyclobuxine D의 심장세포내의 칼슘 유입 억제작용에 기인하는 것으로 사려된다.

  • PDF

Mechanical Stretch-Induced Protection against Myocardial Ischemia-Reperfusion Injury Involves AMP-Activated Protein Kinase

  • Hao, Jia;Kim, Hun-Sik;Choi, Woong;Ha, Tae-Sun;Ahn, Hee-Yul;Kim, Chan-Hyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2010
  • AMP-activated protein kinase (AMPK) protects various tissues and cells from ischemic insults and is activated by many stimuli including mechanical stretch. Therefore, this study investigated if the activation of AMPK is involved in stretch-induced cardioprotection (SIC). Intraventricular balloon and aorto-caval shunt (ACS) were used to stretch rat hearts ex vivo and in vivo, respectively. Stretch preconditioning reduced myocardial infarct induced by ischemia-reperfusion (I/R) and improved post-ischemic functional recovery. Phosphorylation of AMPK and its downstream substrate, acetyl-CoA carboxylase (ACC) were increased by mechanical stretch and ACC phosphorylation was completely blocked by the AMPK inhibitor, Compound C. AMPK activator (AICAR) mimicked SIC. Gadolinium, a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of AMPK and ACC, whereas diltiazem, a specific L-type calcium channel blocker, did not affect AMPK activation. Furthermore, SIC was abrogated by Compound C and gadolinium. The in vivo stretch induced by ACS increased AMPK activation and reduced myocardial infarct. These findings indicate that stretch preconditioning can induce the cardioprotection against I/R injury, and activation of AMPK plays an important role in SIC, which might be mediated by SACs.

흰쥐 해마 절편에서 저산소증에 의한 [$^3H$-5-Hydroxytrytamine의 유리 변동에 미치는 superoxide dismutase/catalase의 영향 (Effect of Superoxide Dismutase on the Release of [$^3H$]-5-Hydroxytrytamine after Hypoxia from Rat Hippocampal Slices)

  • 이경은;박월미;배영숙
    • Toxicological Research
    • /
    • 제13권4호
    • /
    • pp.359-365
    • /
    • 1997
  • Many factors are known to be responsible for cerebral ischemic injury, such as excitatory neurotransmitters, increased intraneuronal calcium, or disturbance of cellular energy metabolism. Recently, oxygen free radicals, formed during ischemia/reperfusion, have been proposed as one of the main causes of ischemia/reperfusion injury. Therefore, to investigate the role of oxygen free radical during ischemia/reperfusion, in the present study the effect of endogenous oxygen free radical scavenger, superoxide dismutase / catalase(SOD / catalase) on the release of [$^3$H]-5-hydroxytryptamine([$^3$H]-5-HT) during hypoxia/reoxygenation in rat hippocampal slices was measured. The hippocampus was obtained from the rat brain and sliced 400 gm thickness with manual chopper. After 30 min's preincubation in the normal buffer, the slices were incubated for 20 min in a buffer containing [$^3$H]-5-HT(0.1 $\mu$M, 74 $\mu$Ci) for uptake, and washed. To measure the release of [$^3$H]-5-HT into the buffer, the incubation medium was drained off and refilled every ten minutes through a sequence of 14 tubes. Induction of hypoxia for 20 min (gassing it with 95% N$_2$/5% CO$_2$) was done in the 6th and 7th tube, and oxygen free radical scavenger, SOD / catalase was added 10 minutes prior to induction of hypoxia. The radioactivity in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total activity. When slices were exposed to hypoxia for 20 min, [$^3$H]-5-HT release was markedly decreased and a rebound release of [$^3$H]-5-HT was observed on the post-hypoxic reoxygenation period. SOD / catalase did not changed the release of [$^3$H]-5-HT in control group, but inhibited the decrease of [$^3$H]-5-HT release in hypoxic period and rebound increase of [$^3$H]-5-HT in reoxygenation period. This result suggest that superoxide anion may play a role in the hypoxic-, and reoxygenation-induced change of [$^3$H]-5-HT release in rat hippocampal slices.

  • PDF

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/Reperfusion Injury during Liver Transplantation

  • Kwon, Jae Hyun;Lee, Jooyoung;Kim, Jiye;Kirchner, Varvara A.;Jo, Yong Hwa;Miura, Takeshi;Kim, Nayoung;Song, Gi-Won;Hwang, Shin;Lee, Sung-Gyu;Yoon, Young-In;Tak, Eunyoung
    • Molecules and Cells
    • /
    • 제42권9호
    • /
    • pp.672-685
    • /
    • 2019
  • Currently, liver transplantation is the only available remedy for patients with end-stage liver disease. Conservation of transplanted liver graft is the most important issue as it directly related to patient survival. Carbonyl reductase 1 (CBR1) protects cells against oxidative stress and cell death by inactivating cellular membrane-derived lipid aldehydes. Ischemia-reperfusion (I/R) injury during living-donor liver transplantation is known to form reactive oxygen species. Thus, the objective of this study was to investigate whether CBR1 transcription might be increased during liver I/R injury and whether such increase might protect liver against I/R injury. Our results revealed that transcription factor Nrf2 could induce CBR1 transcription in liver of mice during I/R. Pre-treatment with sulforaphane, an activator of Nrf2, increased CBR1 expression, decreased liver enzymes such as aspartate aminotransferase and alanine transaminase, and reduced I/R-related pathological changes. Using oxygen-glucose deprivation and recovery model of human normal liver cell line, it was found that oxidative stress markers and lipid peroxidation products were significantly lowered in cells overexpressing CBR1. Conversely, CBR1 knockdown cells expressed elevated levels of oxidative stress proteins compared to the parental cell line. We also observed that Nrf2 and CBR1 were overexpressed during liver transplantation in clinical samples. These results suggest that CBR1 expression during liver I/R injury is regulated by transcription factor Nrf2. In addition, CBR1 can reduce free radicals and prevent lipid peroxidation. Taken together, CBR1 induction might be a therapeutic strategy for relieving liver I/R injury during liver transplantation.