• 제목/요약/키워드: ischemia/reperfusion injury

검색결과 276건 처리시간 0.027초

선택적 iNOS 억제에 의한 골격근 재관류 손상의 감소 (Selective iNOS Inhibition Attenuates Skeletal Muscle Reperfusion Injury)

  • 박종웅;이광석;김성곤;박정호;왕준호;전우주;이정일
    • Archives of Reconstructive Microsurgery
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to determine the effects of selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-aminomethyl]benzyl]acetamidine (l400W) on the reperfused cremaster muscle. The extracellular superoxide dismutase knockout ($EC-SOD^{-/-}$) mice was used to make the experimental window for ischemia-reperfusion injury. The muscle was exposed to 4.5 h of ischemia followed by 90 min of reperfusion and the mice received either 3 mg/kg of 1400W or the same amount of phosphate buffered saline (PBS) subcutaneously at 10 min before the start of reperfusion. The results showed that 1400W treatment markedly improved the recovery of the vessel diameter and blood flow in the reperfused cremaster muscle compared to that of PBS group. Histological examination showed reduced edema in the interstitium and muscle fiber, and reduced nitrotyrosine formation (a marker of total peroxinitrite ($ONOO^-$) in 1400W-treated muscle compared to PBS. Our results suggest that iNOS and $ONOO^-$ products are involved in skeletal muscle I/R injury. Reduced I/R injury by using selective inhibition of iNOS is perhaps via limiting cytotoxic $ONOO^-$ generation, a reaction product of nitric oxide (NO) and superoxide anion ($O_2^-$). Thus, inhibition of iNOS appears to be a good treatment strategy in reducing clinical I/R injury.

  • PDF

Role of Kupffer Cells in the Vasoregulatory Gene Expression during Hepatic Ischemia/Reperfusion

  • Kim, Yong-Hyuk;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.111-117
    • /
    • 2004
  • Hepatic microcirculatory failure is a major component of reperfusion injury in the liver. Recent data provided some evidence that endothelium-derived vasoconstrictors and vasodilators may be functionally important to the control of the total hepatic blood flow under these conditions of circulatory failure. Since Kupffer cells provide signals that regulate the hepatic response in ischemia/reperfusion (I/R), the aim of this study was to investigate the role of Kupffer cells in the I/R-induced imbalance of vasoregulatory gene expression. Rats were subjected to 60 min hepatic ischemia, followed by 5 h of reperfusion. The Kupffer cells were inactivated by gadolinium chloride ($GdCl_3$, 7.5 mg/kg body weight, intravenously) 1 day prior to ischemia. Liver samples were obtained 5 hrs after reperfusion for RT-PCR analysis of the mRNA for genes of interest: endothelin-1 (ET-1), its receptors $ET_A and ET_B$, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1). ET-1 mRNA expression was increased by I/R. mRNA levels for $ET_A$ receptors showed no change, whereas $ET_B$ receptor transcripts increased in the I/R group. The increases in ET-1 and $ET_B$ mRNA were not prevented by the $GdCI_3$ pretreatment. The mRNA levels for iNOS and eNOS significantly increased within the I/R group with no significant difference between the I/R group and the $GdCl_3$-treated I/R group. HO-1 mRNA expression significantly increased in the I/R group and this increase was attenuated by $GdCI_3$. In conclusion, we have demonstrated that an imbalance in hepatic vasoregulatory gene expression occurs during I/R. Our findings suggest that the activation of Kupffer cells is not required for I/R-induced hepatic microvascular dysfunction.

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway

  • Che, Nan;Ma, Yijie;Xin, Yinhu
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.272-278
    • /
    • 2017
  • Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

  • Yang, Lu;Chen, Xiaoxiang;Bi, Zirong;Liao, Jun;Zhao, Weian;Huang, Wenqi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.413-423
    • /
    • 2021
  • Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague-Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

Korean Red Ginseng Induced Cardioprotection against Myocardial Ischemia in Guinea Pig

  • Lim, Kyu Hee;Kang, Chang-Won;Choi, Jin-Yong;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.283-289
    • /
    • 2013
  • This study was designed to evaluate the protective effect of Korean red ginseng (KRG) against ischemia/reperfusion (I/R) injury in isolated guinea pig heart. KRG has been shown to possess various ginsenosides, which are the major components of Panax ginseng. These components are known naturally occurring compounds with beneficial effects and free radical scavenging activity. The heart was induced to ischemia for 60 min, followed by 120 min reperfusion. The hearts were randomly allocated into five groups (n=8 for each group): normal control (N/C), KRG control, I/R control, 250 mg/kg KRG group and 500 mg/kg KRG group. KRG significantly increased hemodynamics parameters such as aortic flow, coronary flow and cardiac output. Moreover, KRG significantly increased left ventricular systolic pressure (LVSP), the maximal rate of contraction (+dP/$dt_{max}$) and maximal rate of relaxation (-dP/$dt_{max}$). Also, treatment of KRG ameliorated electrocardiographic index such as the QRS, QT and RR intervals. Moreover, KRG significantly suppressed the lactate dehydrogenase, creatine kinase-MB fraction and cardiac troponin I and ameliorated the oxidative stress markers such as malondialdehyde and glutathione. KRG was standardized through ultra performance liquid chromatograph analysis for its major ginsenosides. Taken together, KRG has been shown to prevent cardiac injury by normalizing the biochemical and oxidative stress.

쥐에서 허혈-재관류 소장 손상에 대한 담관결찰 및 Insulin-like Growth Factor-I의 영향 (Bile Duct Ligation and Insulin-like Growth Factor-I on the Ischemia-Reperfusion Injury of the Small Bowel)

  • 차제선;이명덕
    • Advances in pediatric surgery
    • /
    • 제3권2호
    • /
    • pp.98-107
    • /
    • 1997
  • To determine whether bile juice exclusion can prevent the mucosal damage, and Insulin-like growth factor-I can promote mucosal regeneration in ischemia-reperfusion injury of the bowel, 39 weanling rats with 10 cm of Thiry-Vella loop were studied. Animal groups were; Control, BL(common bile duct ligation), IGF{insulin-like growth factor-I(IGF-I) infusion} and IGF-BL(combined treatment). IGF-I(1.5 mg/kg/day) was continuously delivered through a subcutaneously implanted miniosmotic pump. After 15 minutes of superior mesenteric artery clamping, a tissue specimen(P) was taken after 30 minutes of reperfusion. Intestinal continuity was restored to allow oral feeding. A specimen of main tract(M) and another of the Thiry-Vella loop(T) were collected for histomorphometry after 48 hours of reperfusion and free feeding. Villus size ratio(VSR), crypt depth(CD), crypt-depth/villus-height ratio(CVR) and injury score(IS) were measured in 15 consecutive villi. The postoperative mortalities of bile duct ligation groups(BL and IGF-BL) were higher than those of other groups. In control group, VSR of M was lower(P<0.05) than P or T, but not in the other groups. VSR of M in control was lower than those in other groups. CD of T in control, IGF and IGF-BL group were higher than those of M. CD of M and T showed gradual increments from control, IGF and IGF-BL group, respectively. CVR of M and T in IGF group were higher than those in control. CVR in IGF-BL group, T was higher than M, and M was higher than P. About IS, M of BL($20.1{\pm}2.5$) and IGF-BL($20.9{\pm}3.3$) groups were significantly lower than that of control($32.4{\pm}2.5$). These results suggest that the exclusion of bile juice reduces the severity of the reperfusion injury of the mucosa, by inability to activate pancreatic enzymes and IGF-I stimulates mucosal regeneration in injured bowel, and the effect is potentiated by bile juice exclusion.

  • PDF

장의 허혈-재관류로 유도된 급성 폐손상에서 아스피린의 작용 (Effect of Aspirin on the Acute Lung Injury Induced by Intestinal Ischemia/Reperfusion.)

  • 박윤엽
    • 생명과학회지
    • /
    • 제19권6호
    • /
    • pp.818-824
    • /
    • 2009
  • 급성 폐손상시 아스피린이 나타내는 염증 억제작용의 기전을 이해하기 위하여 쥐에서 장 허혈-재관류에 의한 급성 폐손상을 유발하여 phospholipase $A_{2}$ 억제제인 mepacrine과 아스피린의 효과를 비교하였다. 내독소 처치시 A549 세포와 RAW264.7 세포에서 cyc1ooxygenase-2 (COX-2)의 발현이 증가했는데, RAW264.7 세포의 반응이 더 크게 나타났다. 장의 허혈-재관류에 의해 장관 및 폐장조직에서 myeloperoxidase 활성도가 증가하여 염증성 호중구의 침윤이 증가했음을 보여 주었다. 조직 소견상에서도 조직 손상과 염증세포의 침윤이 관찰되었으며, 이는 아스피린 또는 mepacrine 전처치 시 억제 되었다. NADPH oxidase 억제작용이 있는 apocynin과 p38 MAPK 억제제인 SB203580은 A549 세포와 RAW264.7 세포의 LPS에 의한 COX-2 발현을 억제시켰으며 RAW264.7 세포에서 더 크게 억제되었다. 이상의 결과를 통해서 아스피린이 급성 폐손상의 예방목적으로 사용될 수 있다고 보여지며, RAW264.7 세포와 A549 세포에서 COX-2 발현은 다른 특성을 보여서 다른 조절기전이 있을 것으로 생각된다.

흰 쥐 적출 심장에서 비작업성 관류 회로를 이용한 인삼 성분 Ginsenoside Rg1 Mixtures의 심근 보호 효과에 관한 실험적 연구 (Experimental Studies on the Effect of Ginsenoside Rg1 Mixtures in an Isolated Rat Heart after Ischemic Arrest and Reperfusion)

  • 김동원;신원선;이재영;김범식;조규석;유세영
    • Journal of Chest Surgery
    • /
    • 제31권6호
    • /
    • pp.567-575
    • /
    • 1998
  • 최근 심장 분야 수술의 발달로 여러 가지 고난도의 심장 수술과 심장 이식술의 시행이 증가하고 있으며, 술 후 예후에 크게 영향을 주는 심장의 심근 손상 방지에 대한 다각적인 연구가 행해지고 있는데, 수술 및 이식 전후의 허혈기와 재관류시 발생할 수 있는 심근 손상을 최소화하고, 술 후 심근 기능의 조속한 회복을 위한 목적으로 여러 약제 및 방법을 제시하고 있다. 한편 한국에서는 오래 전 부터 만병 통치의 영약으로 전해져 오고 있는 인삼을 이용한 동물 실험 및 임상 경험을 통해 성분 효과에 대한 여러 결과가 보고되고 있고, 심장 기능에 대한 효과도 약리학적 측면에서 많은 결과가 발표되었다. 그런데 여러 분획 추출물 중 ginsenoside Rg1 mixtures에 대해서는 그 결과가 다소 미비한 상태이고 ginsenoside Rb1과의 이원 작용에 대한 결과가 흥미로울 것으로 판단되었으며 여러 저자들의 결과에 차이가 있어 ginsenoside Rg1을 이용하여 심근의 허혈 후 재관류 시행 10분 및 지속적 관류 상태에서의 심근 손상에 대한 심근 보호 정도를 혈역학적 지표 및 관상 혈류를 통한 관류액의 효소치를 측정하여 실험한 결과 심근 허혈 및 재관류 후 심근 손상 방지와 심근 기능 회복에 효과가 있다고 판단되며 향후 약제의 투여 용량에 따른 심근 보호 정도에 관한 실험이 필요할 것으로 사료되고, 인삼 성분 각 분획의 복합 투여에 의한 결과도 재차 확인하여야 할 것으로 생각된다.

  • PDF

Regulatory expression and cellular localization of doublecortin in the rat retina following ischemia-reperfusion injury

  • Gwon, Jae-Sung;Chun, Myung-Hoon;Kang, Wha-Sun
    • Animal cells and systems
    • /
    • 제15권2호
    • /
    • pp.155-159
    • /
    • 2011
  • Doublecortin (DCX) is microtubule-associated protein and is required for neuronal migration, differentiation and plasticity. In the retina, it is highly expressed between embryonic day 18 (E18) and E20, and is poorly expressed postnatally. In this study, we investigated the expression and cellular localization of DCX in the rat retina following ischemia induced by transiently increasing the intraocular pressure. While DCX immunoreactivity in control retinas was restricted to the outer border of the inner nuclear layer, it appeared in horizontal cell somata and processes in affected retinas. Quantitative evaluation by immunoblotting confirmed that DCX expression continuously increased after ischemia-reperfusion and showed 370% of control protein levels at 4 weeks after ischemic insult. These results suggest that the DCX in horizontal cells might play a role in neurite remodeling or modulating other neurons in ischemic rat retinas.