• 제목/요약/키워드: irrigation drainage canal

검색결과 39건 처리시간 0.03초

Simulation of IWR Based on Different Climate Scenarios

  • Junaid, Ahmad Mirza;Arshad, M.;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.519-519
    • /
    • 2016
  • Upper Chenab Canal (UCC) is a non-perennial canal in Punjab Province of Pakistan which provides irrigation water only in summer season. Winter and summer are two distinct cropping season with an average rainfall of about 161 mm and 700 mm respectively. Wheat-rice is common crop rotation being followed in the UCC command area. During winter season, groundwater and rainfall are the main sources of irrigation while canal and ground water is used to fulfil the crop water requirements (CWR) during summer. The objective of current study is to estimate how the irrigation water requirements (IWR) of the two crops are going to change under different conditions of temperature and rainfall. For this purpose, 12 different climatic scenarios were designed by combining the assumptions of three levels of temperature increase under dry, normal and wet conditions of rainfall. Weather records of 13 years (2000-2012) were obtained from PMD (Pakistan Meteorological Department) and CROPWAT model was used to simulate the IWR of the crops under normal and scenarios based climatic conditions. Both crops showed a maximum increase in CWR for temperature rise of $+2^{\circ}C$ i.e. 8.69% and 6% as compared to average. Maximum increment (4.1% and 17.51% respectively) in IWR for both wheat and rice was recorded when temperature rise of $+2^{\circ}C$ is coupled with dry rainfall conditions. March & April during winter and August & September during summer were the months with maximum irrigation requirements. Analysis also showed that no irrigation is needed for rice crop during May and June because of enough rainfall in this area.

  • PDF

수리·수문해석 모델을 활용한 농업용수 회귀수량 추정 (Estimating the Return Flow of Irrigation Water for Paddies Using Hydrology-Hydraulic Modeling)

  • 신지현;남원호;윤동현;양미혜;정인균;이광야
    • 한국농공학회논문집
    • /
    • 제65권6호
    • /
    • pp.1-13
    • /
    • 2023
  • Irrigation return flow plays an important role in river flow forecasting, basin water supply planning, and determining irrigation water use. Therefore, accurate calculation of irrigation return flow rate is essential for the rational use and management of water resources. In this study, EPA-SWMM (Environmental Protection Agency-Storm Water Management Model) modeling was used to analyze the irrigation return flow and return flow rate of each intake work using irrigation canal network. As a result of the EPA-SWMM, we tried to estimate the quick return flow and delayed return flow using the water supply, paddy field, drainage, infiltration, precipitation, and evapotranspiration. We selected 9 districts, including pumping stations and weirs, to reflect various characteristics of irrigation water, focusing on the four major rivers (Hangang, Geumgang, Nakdonggang, Yeongsangang, and Seomjingang). We analyzed the irrigation period from May 1, 2021 to September 10, 2021. As a result of estimating the irrigation return flow rate, it varied from approximately 44 to 56%. In the case of the Gokseong Guseong area with the highest return flow rate, it was estimated that the quick return flow was 4,677 103 m3 and the delayed return flow was 1,473 103 m3 , with a quick return flow rate of 42.6% and a delayed return flow rate of 13.4%.

관개(灌漑) 배수로(排水路)의 수생잡초(水生雜草) 분포(分布)와 방제(防除)에 관한 연구(硏究) (Distribution and Control of Aquatic Weeds in Irrigation and Drainage Canals)

  • 변종영;심이성
    • 한국잡초학회지
    • /
    • 제2권2호
    • /
    • pp.169-174
    • /
    • 1982
  • 동진강(東津江) 유역(流域)의 관개(灌漑), 배수로(排水路) 13개소(個所)를 선정하여 잡초(雜草)의 분포(分布)를 조사(調査)하였고 설문(說問)을 통하여 전국에서 53개 농지개량조합(農地改良組合)을 대상으로 관할구역내(管割區域內) 수로(水路)에서 문제(問題)되는 수생잡초(水生雜草)의 발생정도(發生程度)를 조사(調査)하였으며 제초제(除草劑)에 의한 수생잡초(水生雜草)의 방제법(防除法)을 검토(檢討)하였다. 1. 동진강(東津江) 유역(流域)의 관개(灌漑), 배수로(排水路)에서 발생(發生)된 잡초(雜草)는 나도겨폴, 붕어마름, 줄폴, 개연꽃, 갈대, 나사말, 마름, 물수세미와 말즘이었다. 2. 전국적인 수생잡초(水生雜草)의 발생정도(發生程度)를 살펴 보면 수로(水路) 변잡초중(邊雜草中)에서는 줄풀이 가장 많았고, 갈대, 나도겨풀의 순으로 발생(發生)되었다. 수중잡초중(水中雜草中)에서는 붕어마름이 가장 많이 발생(發生)되었고 물수세미, 말즘, 나사말, 말도 비교적 많이 발생(發生)되었다. 3. 나도겨풀은 Paraquat 73.5g/10a, Glyphosate 91.5g/10a와 Fluridone 74.7g/10a에서, 줄풀은 Paraquat 220.5g/10a, Glyphosate 366.0g/10a 와 Fluridone 74.7g/10a에서 고사(枯死)되었다. 붕어마름과 말즘은 2, 4, 5-TP 540g/10a와 Fluridone 100g/10a에서 고사(枯死)되었으나 2, 4-D 600g/10a에서는 80% 방제(防除)되었다.

  • PDF

간척지 논 침수 원인 조사와 방재 대책 수립 (Investigation and Complementary Measures Establishment for Flood on Tidal Reclaimed Paddy Fields)

  • 정주홍;윤광식;최수명;윤석군;고영배;김영택
    • 한국관개배수논문집
    • /
    • 제17권2호
    • /
    • pp.105-114
    • /
    • 2010
  • Tidal land reclamation provided water resources and land for agriculture and contributed stable crop production. However, climate change by global warming disrupts the hydrologic circulatory system of the earth resulting in sea level rise and more frequent flood for reclaimed arable land. Recently, Suyu reclaimed paddy field in Jindo-gun experienced prolonged inundation after heavy rainfall and there is a growing risk of flood damage. Onsite survey and flood analysis using GATE_Pro model of Korea Rural Corporation were conducted to investigate causes of flooding. To perform the analysis, input data such as inflow hydrograph, the lowest elevation of paddy field, neap tide level, management level of Gunnae estuary lake at the time of the flood were collected. Flood analysis confirmed that current drainage facilities are not enough to prevent 20year return period flood. The result of analysis showed flooding more than 24hours. Therefore, flood mitigation alternatives such as sluice gate expansion, installation drainage pumping station, refill paddy land, and catch canal were studied. Replacing drainage culvert of Suyu dike to sluice gate and installing drainage pumping station at the Gunne lake were identified as an effective flood control measures. Furthermore, TM/TC (SCADA) system and expert for gate management are required for the better management of drainage for estuary dam and flood mitigation.

  • PDF

ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링 (Network Modeling of Paddy Irrigation System using ArcHydro GIS)

  • 박근애;박민지;장중석;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.323-327
    • /
    • 2006
  • During the past decades in South Korea, there have been several projects to reduce water demand and save water for paddy irrigation system by automation. This is called as intensive water management system by telemetering of paddy ponding depth and canal water level and telecontrol of water supply facilities. This study suggests a method of constructing topology-based irrigation network system using GIS tools. For the network modeling, a typical agricultural watershed included reservoirs, irrigation and drainage canals, pumping stations was selected. ArcHydro tools composed of edge, junction, waterbody and watershed were used to construct hydro-network. ArcHydro Model was then designed and the network was successfully built using the HydroID. Visualization using ArcHydro tools could display table property of each object. ArcHydro Model was linked to Agricultural Water Demamd and Supply Estimation System (AWDS) which developed by Korea Rural Community and Agriculture Corporation (KRC) to extract information of the study area. And menu of supply facilities information, demand analysis and supply analysis constructed for information acquisition and visualization of acquired informations.

  • PDF

Estimating the rating curve of irrigation canals in the Cheongju Sindae area

  • Mikyoung Choi;Inhyeok Song;Heesung Lim;Hansol Kang;Hyunuk An
    • 농업과학연구
    • /
    • 제51권1호
    • /
    • pp.79-86
    • /
    • 2024
  • As the frequency and intensity of heavy rains increase, the vulnerability of agriculture to disasters also increases. Consequently, there is a need to improve flood and inundation predictions. To enhance the accuracy of inundation predictions, it is essential to monitor water level and discharge data within agricultural areas. This study was conducted to monitor water levels and rainfall in the Cheongju Sindae area from 2022 to 2023, and the data was utilized as input and validation data for agricultural inundation modeling. Four irrigation drainage canals were installed to a square-shaped concrete structure where the water level gauge is. It was then confirmed that the water level rises with rainfall. The flow velocities were monitored during periods of heavy rainfall. The rating curve, which estimates water level and flow velocity based on observations, was estimated using the software K-HQ. The resulting curve was presented with the Coefficient of Determination (R2). K-HQ was also used to calculate the equation for the rating curve, taking outliers into account at each data point. Outliers were extracted and the rating curve was recalculated. As the coefficient of determination of three out of four stations exceeded 0.95, the estimated rating curve may be considered reliable for discharge estimation. This study provides critical data for enhancing agricultural inundation modeling accuracy and drainage improvement projects.

친환경 수로 조성을 위한 다공성 황토블록 개발 (Development of Porous Loess Block for the Environment friendly Canal Construction)

  • 김채수;엄대호;한경수;전택기;최경영;성현제;은재기;양영철;김선주
    • 한국관개배수논문집
    • /
    • 제10권2호
    • /
    • pp.36-42
    • /
    • 2003
  • According to development and urbanization of country, environment and ecosystem were ignored during the past thirty years. So that, canal which had been developed by concrete, is remained as the space where life can not alive any longer. Therefore, in thi

  • PDF

마둔저수지 농업유역의 관개 회귀수량 추정 (Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir)

  • 김하영;남원호;문영식;방나경;김한중
    • 한국농공학회논문집
    • /
    • 제63권2호
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Ecological health assessment of Mae Kha Canal, Chiang Mai Province, Thailand in 2023

  • Onalenna Manene;Nick Deadman;Chotiwut Techakijvej;Songyot Kullasoot;Pitak Sapewisut;Nattawut Sareein;Chitchol Phalaraksh
    • Journal of Ecology and Environment
    • /
    • 제48권1호
    • /
    • pp.110-119
    • /
    • 2024
  • Background: The Mae Kha Canal is one of Chiang Mai's most important waterways. It supports local agriculture, irrigation, and transportation as well as provides stormwater drainage to prevent floods. Due to the unregulated rapid urbanization of the city and lack of efficient waste and wastewater management systems over the past few decades, the canal has become heavily polluted. This study aimed to evaluate the water quality of Mae Kha canal through assessment of the physico-chemical water quality and coliform bacteria. Moreover, benthic macroinvertebrates were samples and assessed using the Biological Monitoring Working Party (BMWPThai) and Average Score Per Taxon (ASPTThai) as biological indices. Results: The physico-chemical showed low dissolved oxygen levels, high levels of ammonia and phosphates, and elevated levels of biochemical oxygen demand, indicating that the water quality had significantly deteriorated. The canal was found to be heavily polluted, with most sites falling into the polluted to very heavily polluted. Coliform bacteria analysis revealed alarmingly high levels of total coliform bacteria and fecal coliform bacteria in the canal. The BMWPThai and ASPTThai scores indicated poor to very poor water quality. Conclusions: The physico-chemical and coliform bacteria indicated that the water quality of the Mae Kha canal had significantly deteriorated. The biological indices also indicated the poor to very poor water quality. This study underscores the urgent need for comprehensive remediation efforts, emphasizing strategic planning, investment, and community engagement to revive the canal's ecological health and water quality.

영농방식변화에 따른 논용수량 산정 시스템 개발

  • 주욱종;김진택;박기욱;이용직
    • 한국관개배수논문집
    • /
    • 제13권1호
    • /
    • pp.82-90
    • /
    • 2006
  • The practical date of rice growing stages and the date for calculating the water demand in paddy field have differences. The causes are rice planting water requirement, nursery bed area and change of average temperature and so on. Some recent papers have shown the same results. So we have investigated the nursery period, rice transplanting period and mid-summer drainage and developed a system for estimating water demand. And we calculated the water demand by using the system. The result showed that calculation by using the new system is more appropriate than the calculation by using the established period. But because water losses in canals and crop coefficient are not determined appropriately, we can calculate the agricultural water demand more accurately by dstablishing canal losses ratio, crop coefficient and so on.

  • PDF