• Title/Summary/Keyword: irrigated paddy field

Search Result 75, Processing Time 0.031 seconds

논 벼 이앙 전 써레질 유무에 따른 토양환경 및 비점오염원 효과 비교: 예비 연구자료 (Comparison of Soil Properties and Non-point Pollution Effects According to Puddling and Non-puddling before Rice Transplanting in Paddy Field: Preliminary Research Data)

  • 김현기;이윤호;박현진;김헌중;이희우;윤종탁;장재기
    • 한국농림기상학회지
    • /
    • 제26권3호
    • /
    • pp.191-198
    • /
    • 2024
  • 전통적으로 논 벼 이앙 전에 실시해온 써레질은 잡초 방제와 이앙의 용이성 등 여러 이점을 제공해왔지만, 농기계와 재배법의 발달로 인해 이를 필수적인 영농 작업으로 유지해야 하는지에 대한 논의가 있다. 본고에서는 농번기의 집중된 노동력 분산, 토양 물리성 변화, 그리고 비점오염원 감축 등의 장점을 가지고 있는 무써레질 재배기술을 우리나라에서 처음으로 실험하였으며, 관련 논의 및 연구가 더 활성화되어 기술보급이 확대되기를 바라고자 관측한 모든 원자료(raw data)를 공개하였다. 무써레질 재배 기술에 있어서 본답 관리 기간에 비가 많이 내리게 되면 토양이 마른 상태에서 실시하는 로터리와 정지 작업이 어렵다. 정지 작업 후 바로 담수를 하지 않으면 잡초 발생이 문제가 될 수 있으므로, 일일 감수심이 높은 논을 피해서 수리 안전답 혹은 배수가 약간 불량한 논에서 실시하는 것이 유리할 것으로 사료된다. 또한, 논 토양의 환원 억제 효과를 가진 무써레질 기술의 벼 재배 기간 동안 메탄 발생 저감 효과를 규명함으로써, 농업 분야에서 온실가스 배출 저감 기술로서 추가적인 연구가 필요할 것으로 판단된다.

열수지법(熱收支法)에 의한 벼논의 수온추정(水溫推定) (Estimation of Water Temperature by Heat Balance Method in Paddy Field.)

  • 이정택;윤성호;임정남;고견보
    • 한국환경농학회지
    • /
    • 제8권1호
    • /
    • pp.30-36
    • /
    • 1989
  • 벼 생육(生育)에 기온(氣溫)과 더불어 밀접(密接)한 영향(影響)을 주는 논의 수온(水溫) 환경(環境)의 생육시기별(生育時期別) 변화(變化)를 대기(大氣)의 온도(溫度), 습도(濕度)) 일사량(日射量)과 군락(群落)의 엽면적지수(葉面積指數)로써 추정(推定)하고자 1984년(年)에 수원(水原)과 진부(珍富)에서 측정조사(測定調査)하여 분석(分析)한 후 그 추정(推定) 수온(水溫)을 실측치(實測値)와 비교검토(比較檢討)한 결과(結果)를 요약(要約)하면 등음과 같다. 1. 벼 생육초기(生育初期)의 수온(水溫)은 대기기온(大氣氣溫)보다 최고(最高)${\cdot}$최저온도(最低溫度)가 모두 $1{\sim}2^{\circ}C$ 정도(程度)높았다. 2. 수면(水面)에 도달(到達)되는 순복사량(純輻射量)은 엽면적지수(葉面積指數)의 지수함수(指數函數)로 표현(表現)된다. 3. 벼의 엽면적지수(葉面積指數)가 $3{\sim}4$이상(以上)이 되면 수면(水面)에 도달(到達)되는 광량(光量)의 감쇠(減衰)로 논의 수온(水溫)은 대기기온(大氣氣溫)보다 낮아졌다. 4. 평야지(平野地)인 수원지방(水原地方)의 보통논에서는 조합법(組合法)을 이용(利用)한 추정수온(推定水溫)은 실측치(實測値)와 비슷한 경향(傾向)을 나타내어 대기기상(大氣氣象)에 의(依)한 논의 수온추정(水溫推定)이 가능(可能)한 것으로 판단(判斷)되었다. 그러나 산간고랭지(山間高冷地)인 진부(珍富)의 사질답(砂質畓)에서는 이 조합법(組合法)을 이용(利用)한 수온예측모형(水溫豫測模型)은 적용(適用)이 불가능(不可能)하였다.

  • PDF

저수지 관개논 물수지 및 물질수지 분석 (Nutrient Mass Balance Analysis in the Reservoir Irrigated Rice Paddy Field)

  • 송정헌;강문성;송인홍;박지훈;안지현;장정렬
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.334-334
    • /
    • 2012
  • 수자원 이용량 중 농업용수 이용량은 약 47 %를 차지하고 있고 전체 논 대비 저수지 관개논 비중은 45 %에 달하고 있어 저수지 관개논의 비점오염배출에 대한 정량적인 평가 및 관리가 요구된다. 논에서의 비점오염배출량은 강우뿐만 아니라 시비 및 물관리 등 영농인자에 의해 영향을 받기 때문에 시기별 지속적인 모니터링이 필요하다. 본 연구의 목적은 저수지 관개논을 대상으로 비점오염 유출입 기작을 종합적으로 모니터링하고, 이를 바탕으로 저수지 관개논에서의 물수지 및 물질수지를 산정하고, 그 결과를 분석/평가하는 데 있다. 본 연구의 대상지구는 이동저수지 하류에 위치한 관개논을 선정하였고, 수문/수질 계측망을 구성하여 모니터링을 수행하였다. 물수지 분석을 위해 강우량, 담수심, 침투량, 관개량, 지표유출량 등을 관측하였고, 증발산량은 Penmann-Monteith 식으로 산정하였다. 물질수지 분석을 위해 시비량, 시비시기, 관개수 및 유출수 수질 등을 조사하였고 토양 및 식물체 성분을 분석하였다. 관개논에서의 지표유출량은 1232.1 mm, 침투량은 111.5 mm, 증발산량은 598.9 mm으로 나타났고, 질소 기준 배출부하량은 28.76 kg/ha, 식물흡수는 120.37 kg/ha의 값을 보였다. 본 연구결과는 관개논에서의 비점오염 주요 관리인자의 상호관련성 및 배출기작을 구명하고, 비점오염배출량 저감을 위한 영농방법개선 방안 수립에 기초자료가 될 것으로 기대된다.

  • PDF

Analysis of spatial characteristics and irrigation facilities of rural water districts

  • Mikyoung Choi;Kwangya Lee;Bosung Koh;Sangyeon Yoo;Dongho Jo;Minchul La;Sangwoo Kim;Wonho Nam
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.903-916
    • /
    • 2023
  • This study aims to establish basic data for efficient management of rural water by analyzing regional irrigation facilities and benefitted areas in the statistical yearbook of land and water development for agriculture at the watershed level. For 511 domestic rural water use areas, water storage facilities (reservoirs, pumping & drainage stations, intake weirs, infiltration galleries, and tube wells) are spatially distributed, and the benefitted areas provided at the city/county level are divided by water use area to provide agricultural water supply facilities. The characteristics of rural water district areas such as benefitted area, were analyzed by basin. The average area of Korea's 511 rural water districts is 19,638 ha. The average benefitted area by rural water district is 1,270 ha, with the Geum River basin at 2,220 ha and the Yeongsan River basin at 1,868 ha, which is larger than the overall average. The Han River basin at 807 ha, the Nakdong River basin at 1,121 ha, and the Seomjing River basin at 938 ha are smaller than the overall average. The results of this basic analysis are expected to be used to set the direction of various supply and demand management projects that take into account the rational and scientific use and distribution of rural water and the characteristics of water use areas by presenting a quantitative definition of Korea's agricultural water districts.

수도의 염해와 대책 (Salt Injury and Overcoming Strategy of Rice)

  • 이승택
    • 한국작물학회지
    • /
    • 제34권s02호
    • /
    • pp.66-80
    • /
    • 1989
  • Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.

  • PDF

건조 스트레스 환경과 스트레스가 없는 환경에서 GM벼와 non-GM벼의 농업 형질 비교 (A Comparison Between the Agricultural Traits of GM and Non-GM Rice in Drought Stress and Non-stress Conditions)

  • 나플라 레이칠;박재령;전동원;김경민
    • 생명과학회지
    • /
    • 제30권5호
    • /
    • pp.411-419
    • /
    • 2020
  • GM 작물의 개발은 경제적 중요성을 갖게 되었고 상업적인 GM 작물을 재배하는 국가들은 1960년대 이후 지속적으로 증가하고 있다. 비록 GM 작물의 경작과 상업화는 경제적 중요성을 얻었지만, 여전히 non-GM 작물에 비해 그들의 농업적 특성을 평가할 필요가 있다. 본 연구는 유전공학에서 사용된 방법의 결과로 발생할 수 있는 의도하지 않은 문제 발생 여부를 확인하기 위해 내건성 유전자 CaMsrB2를 포함한 GM 쌀과 non-GM 쌀의 농업적 특성을 내건성 온실과 관개수답에서 평가했다. 관개수답에서는 GM벼와 non-GM벼의 모든 농업형질에서 유의미한 차이가 없었다. 그러나 내건성온실에서 수수와 수량에서 GM벼와 non-GM벼에서 유의미한 차이가 있었다. 따라서 본 연구 결과는 CaMsrB2 유전자를 함유한 GM벼가 내건성 조건에서 non-GM 쌀에 비해 경제적 가치가 우수하다는 것을 시사한다. 이 결과는 또한 CaMsrB2 유전자를 함유한 GM 벼는 가뭄에 취약한 지역에서 안정적으로 수량을 유지 하면서 재배 가능 하다.

생태계와 대기 간의 가스 교환 메카니즘 규명을 위한 안정동위원소의 응용 (Application of Stable Isotopes in Studies of Gas Exchange Processes Between Biosphere and the Atmosphere)

  • 한광현;정덕영
    • 한국토양비료학회지
    • /
    • 제43권2호
    • /
    • pp.242-251
    • /
    • 2010
  • 이 논문은 장기간에 걸쳐 논 생태계에서 측정된 이산화탄소와 메탄의 순교환량 과 이와 동시에 모니터링된 다양한 환경요소들과의 상관관계들을 살펴보고, 이들 플럭스와 환경 요소 및 생태계 요소들이 어떻게 교환된 이산화탄소와 메탄의 동위원소비에 영향을 미치는 지를 파악하고자 하였다. 생육기간 동안 관측된 이산화탄소 및 메탄의 순교환량은 는 담수기에는 각각 일사량과 토양온도의 변화에 따라 경시적인 변화를 보였으나, 낙수기를 전후해서는 토양에 저장되어 있던 가스들이 낙수 후 확산장벽이 사라짐으로 인해 급격히 대기 중으로 대량 방출되는 경향을 보였다. 이러한 플럭스의 변화는 토양 중에 저장되어 있는 이산화탄소와 메탄의 저장량 감소와 직접적으로 연결되었고, 이에 상응하는 순교환량 중 토양의 기여분 증가와 대기 중 이산화탄소 및 메탄의 농도 증가 및 동위원소비 변화가 관찰되었다. 이러한 변화는 환원상태에서 진행되는 메탄생성의 결과로, 기질인 이산화탄소는 상대적으로 무거운 $^{13}C$ 동위원소가 축적되는 반면, 생성물인 메탄은 가벼운 $^{12}C$ 동위원소가 축적되기 때문으로 판단된다. 따라서, 토양 유래 이산화탄소는 식물체 호흡 유래 이산화탄소와 구분되는 동위원소 특성을 지내게 된다. Keeling plot 혼합 모델로 추정된 이산화탄소와 메탄의 가스교환 동위원소 지문은 담수기와 낙수기에 걸쳐 매우 뚜렷한 변화를 보였으며, 그 변화 정도는 토양 중 가스 저장량, 교환된 플럭스의 크기 및 방향, 이동 경로, 부분적인 방출 이산화탄소의 재흡수도, 메탄의 산화정도 등에 의해 크게 달랐다. 본 연구의 결과들은 자연상태에서 관측된 플럭스와 결합된동위원소 기술이 생태계 내 다양한 가스 교환 메커니즘을 이해하는데 매우 유용한 도구가 될 수 있음을 보여주였다.

수온차이(水溫差異)가 수도생육(水稻生育)에 미치는 영향(影響) (Effects of the Water Temperature Differences on Rice Growth in a Paddy Field)

  • 김이열;조인상;김흥배;이용환;조병옥
    • 한국토양비료학회지
    • /
    • 제18권4호
    • /
    • pp.359-365
    • /
    • 1985
  • 수온차이(水溫差異)가 수도(水稻) 생장특성(生長特性) 변화(變化)에 미치는 영향(影響)을 보기 위하여 내랭수성(耐冷水性)이 각각(各各) 다른 4개 품종(品種)(관악(冠岳)벼 농백(農白)벼 풍산벼 남풍벼)을 규암(規岩) 미사질양토(微砂質壤土)에 공시(供試)하여 수온별(水溫別)로 조사(調査)하였다. 1. 수온(水溫)에 따라 품종(品種)에 관계(關係)없이 민감(敏感)하게 변화(變化)되는 생육특성(生育特性)은 간장(稈長), 추출도(抽出度), 제(第) 3 절간직경(節稈直徑), 출수일수(出穗日數), 임실률(稔實率), 등숙율(登熟率), 수당립수, 수량등(收量等) 이었고 수장(穗長), 지엽장(止葉長), 이삭목 굵기, 수수등(穗數等)은 품종(品種)에 따라 변화(變化) 양상(樣相)이 다르나 수온(水溫)과 관계(關係)가 큰 것으로 나타났다. 2. 제(第) 2, 제(第) 3 절간장(節稈長)은 수온변화(水溫變化)에 둔감(鈍感)하나 제(第) 1 절간장(節稈長)의 신장(伸長)과 제(第) 4 절간(節稈)의 출현(出現)은 수온(水溫)에 민감(敏感)하여 간장(稈長) 결정(決定)의 주요인(主要因)으로 생각되었다. 3. 부위별건물중(部位別乾物重), 총건물중(總乾物重) 비율(比率)은 수온(水溫)에 민감(敏感)하였으며 수온(水溫)이 상승(上昇)하면 종실건물중(種實乾物重) 비율(比率)은 증가(增加)되고 경엽(莖葉)과 뿌리의 점유율(占有率)은 현저(顯著)히 감소(減少)되었다. 4. 체내(體內) 엽록소농도(葉綠素濃度)는 수온(水溫) $20^{\circ}C$에서 가장 높았고 수온증가(水溫增加)에 따라 점차(漸次) 감소(減少)되었다. 5. 수온별(水溫別) 정조수량(正租收量)은 $17^{\circ}C$에서는 개무상태(皆無狀態)이었고 품종별(品種別) 단위수온(單位水溫) 증가당 수량증대폭(水量增大幅)은 풍산>관악(冠岳)>농백(農白)>남풍 순(順)이었다. 6. 평균수온(平均水溫) $21^{\circ}C$는 수량(收量)의 적기점(赤起點)이 되었고, 다수계(多收系) 품종(品種)의 적정수온(適正水溫) 조건(條件)은 일반계(一般系)보다 높았다.

  • PDF

폐수처리장 방류수 관개가 벼생육 및 침출수 염농도에 미치는 영향 (Influences of Discharge Waters from Wastewater Treatment Plants on Rice (Oryza sativa L.) Growth and Percolation Water Salinity)

  • 신중두;이종식;김원일;이창은;윤순강;엄기철
    • 한국토양비료학회지
    • /
    • 제36권1호
    • /
    • pp.24-31
    • /
    • 2003
  • 벼 재배에 있어 이앙기 가뭄시 대체 용수원을 개발하고자 공장폐수처리장(이하 공장폐수 처리수)와 하수종말처리장 방류수(이하 하수처리수)를 관개한 다음 지하 침투수 수질 및 벼생육 변화를 구명하기 위해 본 시험을 수행하였다. 대체 관개 용수원으로서 공장폐수 처리수의 COD, $NH_4{^+}-N$, $Mn^{2+}$, 및 $Ni^+$ 농도와 하수처리수중의 SS및 $PO_4-P$농도는 여러 국가들의 관개 재활용 수질 기준보다 높은 것으로 나타났다. 하수처리수의 초장은 공장폐수 처리수 10일간 관개구를 제외하고 지하수 관개구 보다 약 2 cm 정도 짧았으나, 지하수 및 하수처리수 관개구의 경수는 관개기간에 관개 없이 유의차가 없는 것으로 나타났다. 그리고 하수처리수 및 공장폐수 처리수 20일 관개구의 수확지수는 유의차가 없었지만, 공장폐수 처리수 30일 관개구의 수확지수는 토성에 관계없이 하수처리수 관개구 보다 약간 높은 것으로 나타났다. 공장폐수 처리수 관개구의 토양 침출수중의 SAR값은 하수처리수 관개구보다 2배 이상 높았지만, 하수처리수 관개구는 지하수 관개구와 비교하여 유의차가 없는 것으로 나타났다. 이앙 30일 후 공장폐수 및 하수종말처리수 관개구의 토양침출수중 평균 전기전도도(EC1) 값은 각각 식양토에서 4.7과 $3.4dS\;m^{-1}$ 그리고 사양토에서 3.5 및 $2.5dS\;m^{-1}$로 나타났다. 전생육 기간 및 토성에 따른 공장폐수 처리수 관개구의 토양 침출수중 $EC_i$값이 하수처리수 관개구 보다 2배 이상 높게 나타났지만, 이앙 30일 후부터 급격히 감소하는 경향을 보였다. 그렇지만 하수종말 처리수 관개구의 토양 침출수 중 $EC_i$ 값은 지하수 관개구와 비교하여 유의차가 없는 것으로 나타났다. 이상의 결과로 보아 벼 재배시 하수종말 처리수는 가뭄으로 인한 농업용수가 부족한 경우 대체수자원으로서 잠정적 활용이 가능한 것으로 생각된다.

지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구 (Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods)

  • 한욱동
    • 한국농공학회지
    • /
    • 제16권1호
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF