Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.5.411

A Comparison Between the Agricultural Traits of GM and Non-GM Rice in Drought Stress and Non-stress Conditions  

Racheal, Nafula (School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
Park, Jae-Ryoung (School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
Jeon, Dong Won (School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
Kim, Kyung-Min (School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
Publication Information
Journal of Life Science / v.30, no.5, 2020 , pp. 411-419 More about this Journal
Abstract
The development of GM crops has gained significant economic importance, and the number of countries cultivating commercial GM crops has continuously increased since the 1960s. Globally, the area given to cultivating GM soybean, maize, cotton, and canola alone had reached 114 million hectares by 2007. Although the economic importance of cultivating and commercializing GM crops has increased, there is still a need to assess their agricultural traits in comparison to non-GM produce. This study evaluated the agricultural traits of GM rice containing the drought-tolerant gene CaMsrB2 and standard rice to investigate any unintended effects of genetic engineering. The GM and non-GM rice were compared in terms of various agricultural traits in a drought greenhouse and an irrigated paddy field. There was no statistical difference in the field-grown crops, but there was a statistically significant difference in both tiller number and yield in the greenhouse. These results therefore suggest that GM rice lines containing the CaMsrB2 gene are superior in performance to non-GM rice in drought stress conditions and could be grown in drought-prone areas where drought intolerant rice may not be able to grow.
Keywords
Drought; GM; non-GM; rice; yield;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Oh, S. J., Kim, Y. S., Kwon, C. W., Park, H. K., Jeong, J. S. and Kim, J. K. 2009. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol. 150, 1368-1379.   DOI
2 Oh, S. K., Baek, K. H., Seong, E. S., Joung, Y. H., Choi, G. J., Park, J. M. and Choi, D. 2010. CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol. 154, 245-261.   DOI
3 Park, H., Kim, Y., Choi, M., Lee, J., Choi, I., Choi, I. and Kwon, S. 2009. Chloroplast-targeted expression of PsAPX1 enhances tolerance to various environmental stresses in transgenic rice. Kor. J. Breed. Sci. 41, 261-270.
4 Ribaut, J. M., Jiang, C., Gonzalez-de-Leon, D., Edmeades, G. and Hoisington, D. 1997. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. Appl. Genet. 94, 887-896.   DOI
5 Rischer, H. and Oksman-Caldentey, K. M. 2006. Unintended effects in genetically modified crops: revealed by metabolomics? Trends Biotechnol. 24, 102-104.   DOI
6 Shu, Q. Y., Cui, H. R., Ye, G. Y., Wu, D. X., Xia, Y. W., Gao, M. W. and Altosaar, I. 2002. Agronomic and morphological characterization of Agrobacterium-transformed Bt rice plants. Euphytica 127, 345-352.   DOI
7 Siddiqui, Z. S., Cho, J. I., Park, D. B., Lee, G. S., Ryu, T. H., Shahid, H. and Park, S. C. 2015. Field assessment of CaMsrB2 transgenic lines in a drought stress environment. Turk. J. Bot. 39, 973-981.   DOI
8 Oh, S. J., Song, S. I., Kim, Y. S., Jang, H. J., Kim, S. Y., Kim, M. and Kim, J. K. 2005. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138, 341-351.   DOI
9 Trewavas, A. J. 2001. The population/biodiversity paradox. Agricultural efficiency to save wilderness. Plant Physiol. 125, 174-179.   DOI
10 Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R. and Sheffield, J. 2014. Global warming and changes in drought. Nat. Clim. Chang. 4, 17-22.   DOI
11 Woodward, A., Smith, K. R., Campbell-Lendrum, D., Chadee, D. D., Honda, Y., Liu, Q. and Chafe, Z. 2014. Climate change and health: on the latest IPCC report. Lancet 383, 1185-1189.   DOI
12 Wraight, C., Zangerl, A., Carroll, M. and Berenbaum, M. R. 2000. Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc. Natl. Acad. Sci. 97, 7700-7703.   DOI
13 Xiao, B., Huang, Y., Tang, N. and Xiong, L. 2007. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor. Appl. Genet. 115, 35-46.   DOI
14 Dhungana, S. K., Kim, B. R., Son, J. H., Kim, H. R. and Shin, D. H. 2015. Comparative study of CaMsrB2 gene containing drought-tolerant transgenic rice (Oryza sativa L.) and non-transgenic counterpart. J. Agron. Crop Sci. 201, 10-16.   DOI
15 Tilman, D., Balzer, C., Hill, J. and Befort, B. L. 2011. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 108, 20260-20264.   DOI
16 Bashir, K., Husnain, T., Fatima, T., Latif, Z., Mehdi, S. A. and Riazuddin, S. 2004. Field evaluation and risk assessment of transgenic indica basmati rice. Mol. Breed. 13, 301-312.   DOI
17 Carvalho, F. P. 2006. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685-692.   DOI
18 Chaves, M. M., Maroco, J. P. and Pereira, J. S. 2003. Understanding plant responses to drought from genes to the whole plant. Funct. Plant Biol. 30, 239-264.
19 Cho, S. K., Ryu, M. Y., Song, C., Kwak, J. M. and Kim, W. T. 2008. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell. 20, 1899-1914.   DOI
20 Daryanto, S., Wang, L. and Jacinthe, P. A. 2017. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agric. Water Manage. 179, 18-33.   DOI
21 Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A. and Saud, S. 2017. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8, 1147.   DOI
22 Farooq, M., Hussain, M. and Siddique, K. H. 2014. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 33, 331-349.   DOI
23 Jang, I. C., Oh, S. J., Seo, J. S., Choi, W. B., Song, S. I., Kim, C. H. and Nahm, B. H. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 131, 516-524.   DOI
24 Hedden, P. 2003. The genes of the Green Revolution. Trends Genet. 19, 5-9.   DOI
25 Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q. and Xiong, L. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. 103, 12987-12992.   DOI
26 Im, J. S., Cho, K. S., Cho, J. H., Park, Y. E., Cheun, C. G., Kim, H. J. and Byun, M. O. 2012. Growth, quality, and yield characteristics of transgenic potato (Solanum tuberosum L.) overexpressing StMyb1R-1 under water deficit. Plant Biotechnol. 39, 154-162.   DOI
27 James, C. 2007. Global status of commercialized biotech/GM crops, 2007 (Vol. 37): ISAAA Ithaca, NY.
28 James, C. 2009. Brief 41: Global status of commercialized biotech/GM crops: 2009. ISAAA Brief. Ithaca, NY: International Service for the Acquisition of Agri-biotech Applications. 290.
29 Jeon, J. S., Lee, S., Jung, K. H., Yang, W. S., Yi, G. H., Oh, B. G. and An, G. 2000. Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breed. 6, 581-592.   DOI
30 Jiang, X. and Xiao, G. 2010. Detection of unintended effects in genetically modified herbicide-tolerant (GMHT) rice in comparison with non-target phenotypic characteristics. Afr. J. Agric. Res. 5, 1082-1088.
31 Haslberger, A. G. 2003. Codex guidelines for GM foods include the analysis of unintended effects. Nat. Biotechnol. 21, 739.   DOI
32 Lee, H. S., Yi, G. H., Park, J. S., Seo, S. C., Sohn, J. K. and Kim, K. M. 2011. Analysis of the weediness potential in vitamin A enforced rice. Kor. J. Weed Sci. 31, 160-166.   DOI
33 Jiao, Z., Si, X. X., Li, G. k., Zhang, Z. M. and Xu, X. P. 2010. Unintended compositional changes in transgenic rice seeds (Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods. J. Agric. Food Chem. 58, 1746-1754.   DOI
34 Khush, G. S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59, 1-6.   DOI
35 Kiani, G., Nematzadeh, G. A., Ghareyazie, B. and Sattari, M. 2009. Comparing the agronomic and grain quality characteristics of transgenic rice lines expressing cry1Ab vs. non-Transgenic controls. Asian J. Plant Sci. 8, 64.   DOI
36 Lee, K. J., Kim, D. J., Ban, H. Y. and Lee, B. W. 2015. Genotypic differences in yield and yield-related elements of rice under ElevATED air temperature conditions. KJAFM. 17, 306-316.
37 Lesk, C., Rowhani, P. and Ramankutty, N. 2016. Influence of extreme weather disasters on global crop production. Nature 529, 84.   DOI
38 Long, S. P. and Ort, D. R. 2010. More than taking the heat: crops and global change. Curr. Opin. Plant Biol. 13, 240-247.   DOI
39 Matiu, M., Ankerst, D. P. and Menzel, A. 2017. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS One 12, e0178339.   DOI
40 Oard, J., Cohn, M. A., Linscombe, S., Gealy, D. and Gravois, K. 2000. Field evaluation of seed production, shattering, and dormancy in hybrid populations of transgenic rice (Oryza sativa) and the weed, red rice (Oryza sativa). Plant Sci. 157, 13-22.   DOI