• Title/Summary/Keyword: irregular structures

Search Result 411, Processing Time 0.023 seconds

The Construction of Digital Terrain Models by a Triangulated Irregular Network (비정규삼각망 데이타구조에 의한 수치지형모델의 구성)

  • 이석찬;조규전;이창경;최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 1990
  • A regular grid or a triangulated irregular network is generally used as the data structure of digital terrain models. A Regular grid is simple and easy to manipulate, but it can't describe well terrain surface features and requires vast volumes of data. In the meantime, a triangulated irregular network has complex data structure, but it can describe well terrain surface features and can achieve the accuracy suitable to its application with relatively little data. This paper aims at the construction of efficient digital terrain models by the improvment of a triangulated irregular network based on Delaunay triangulation. Regular and irregular data set are sampled from existing contour maps, and the efficiency and the accuracy of the two data structures are compared.

  • PDF

Scenario-based seismic performance assessment of regular and irregular highway bridges under near-fault ground motions

  • Dolati, Abouzar;Taghikhany, Touraj;Khanmohammadi, Mohammad;Rahai, Alireza
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.573-589
    • /
    • 2015
  • In order to investigate the seismic behavior of highway bridges under near-fault earthquakes, a parametric study was conducted for different regular and irregular bridges. To this end, an existing regular viaduct Highway Bridge was used as a reference model and five irregular samples were generated by varying span length and pier height. The seismic response of the six highway bridges was evaluated by three dimensional non-linear response history analysis using an ensemble of far-fault and scenario-based near-fault records. In this regard, drift ratio, input and dissipated energy as well as damage index of bridges were compared under far- and near-fault motions. The results indicate that the drift ratio under near-fault motions, on the average, is 100% and 30% more than far-fault motions at DBE and MCE levels, respectively. The energy and damage index results demonstrate a dissipation of lower energy in piers and a significant increase of collapse risk, especially for irregular highway bridges, under near-fault ground motions.

Wind tunnel tests of an irregular building and numerical analysis for vibration control by TLD

  • Jianchen Zhao;Jiayun Xu;Hang Jing
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Due to the irregular shape and the deviation of stiffness center and gravity center, buildings always suffer from complex surface load and vibration response under wind action. This study is dedicated to analyze the surface wind load and wind-induced response of an irregular building, and to discuss the possibility of top swimming pool as a TLD to diminish wind-induced vibration of the structure. Wind tunnel test was carried out on a hotel with irregular shape to analyze the wind load and structural response under 8 wind incident angles. Then a precise numerical model was established and calibrated through experimental results. The top swimming pool was designed according to the principle of frequency modulation, and equations of motion of the control system were derived theoretically. Finally, the wind induced response of the structure controlled by the pool was calculated numerically. The results show that both of wind loads and wind-induced responses of the structure are significantly different with wind incident angle varies, and the across-wind response is nonnegligible. The top swimming pool has acceptable damping effect, and can be designed as TLD to mitigate wind response.

Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities

  • Nezhad, Moosa Ebrahimi;Poursha, Mehdi
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.353-373
    • /
    • 2015
  • In this paper, the effects of different types of irregularity along the height on the seismic responses of moment resisting frames are investigated using nonlinear dynamic analysis. Furthermore, the applicability of consecutive modal pushover (CMP) procedure for computing the seismic demands of vertically irregular frames is studied and the advantages and limitations of the procedure are elaborated. For this purpose, a special moment resisting steel frame of 10-storey height was selected as reference regular frame for which the effect of higher modes is important. Forty vertically irregular frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities are created by applying two modification factors (MF=2 and 4) in four different locations along the height of the reference frame. Seismic demands of irregular frames are computed by using the nonlinear response history analysis (NL-RHA) and CMP procedure. Modal pushover analysis (MPA) method is also carried out for the sake of comparison. The effect of different types of irregularity along the height on the seismic demands of vertically irregular frames is investigated by studying the results obtained from the NL-RHA. To demonstrate the accuracy of the enhanced pushover analysis methods, the results derived from the CMP and MPA are compared with those obtained by benchmark solution, i.e., NL-RHA. The results show that the CMP and MPA methods can accurately compute the seismic demands of vertically irregular buildings. The methods may be, however, less accurate especially in estimating plastic hinge rotations for weak or weak-and-soft top and middle storeys of vertically irregular frames.

Seismic Fragility Analysis of Torsionally Irregular Wall Structures (평면 비대칭 벽식 구조물의 지진 취약도 분석)

  • Ha, Tae-Hyu;Hong, Sung-Gul
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.161-168
    • /
    • 2005
  • Torsional behavior of eccentric structure under seismic loading may cause the stress and/or deformation concentration. Hence it is hard to estimate the seismic behavior of the structure with plan irregularity. This study suggests the method to setup the seismic fragility curve of the torsionally irregular structures. The suggested fragility curve may be acquired from the fragility surface defined on the D-R plan according to the estimated torsional behavior. The torsional behavior is predicted considering the inelastic region by adapting the inelastic stiffness of each wall. Finally the system displacement is converted to the spectral acceleration and the fragility curve for the seismic excitation level is presented. In addition, the fragility curve considering the excitation direction is proposed.

  • PDF

STM Investigation of Methanol Adsorption on Al2O3/NiAl(110) Deposited by Pulsed Injection

  • Lee, Youn-Joo;Choi, E.;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.318-318
    • /
    • 2011
  • Etching of an ultrathin aluminum oxide film on NiAl(110) substrate by methanol is studied by home-built scanning tunneling microscopy at room-temperature. We deposited liquid methanol on thin alumina film by using a high speed solenoid valve suitable for deposition of thermally unstable molecules. It is found that only the reflection domain boundary between two domains was preferentially etched by methanol. Since the reflection domain boundary has many oxygen vacancies and irregular structures, judging from the fact, we assume that oxygen vacancies cause the chemically reactive phenomena of methanol in reflection domain boundary on an alumina film. The reactivity of the reflection domain boundary is attributed to the oxygen vacancies due to irregular structures. Similar reactivity is found on the oxygen deficient alumina produced on top of the intact alumina.

  • PDF

A Seismic Behavior of a 3-dimensional Irregular Setback Structure (3차원 비정형 Setback 구조물의 지진 거동)

  • 문성권
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2000
  • Seismic behavior of 3-dimensional setback structures showing abrupt reductions of the floor size within the structure height and the effect of in-plane deformations of floor slabs on the seismic behavior of those structures are investigated. To find out general seismic behavior of 3-dimensional setback structures two parameters, level of setback(L/sub s/) and degree of setback(R/sub s/) are used. Analysis results obtained from forty eight setback structures show that a sudden change in story shear near setback level is occurred for irregular setback structures. The effect of in-plane deformation of floor slabs on the seismic behavior of setback structures is greatly influenced by the arrangement of lateral load resisting elements and it is more pronounced for frame-shear wall system showing large difference in stiffness among the lateral load resisting elements. The in-plane deformation of floor slabs results in reduced base shear, especially for FW-type structures with L/sub s/=1.0. Also, it brings about reduced story shear for the lateral load resisting element with shear wall and increase in story shear lot the lateral load resisting element without shear wall. The in-plane deformation of floor slabs at the base portion and/or tower portion due to difference in stiffness among the lateral load resisting elements brings about increment of floor displacements at all floor level.

  • PDF

Problems in Seismic Design of High-Rise RC Building Structures having Irregularity (비정형 고층 RC 건축물의 내진설계 시 문제점)

  • 이한선;고동우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.125-132
    • /
    • 2003
  • This paper clarifies the problems which structural engineers would have when the high-rise reinforced concrete building structures with vertical and plan irregularities are to be designed against earthquakes. The most important problems appear to be as follows: (1) ambiguity in defining the principal direction of the structure and the dynamic base shear, (2) the methodology how to account for the accidental eccentricity when the modal analysis should be conducted as required for the torsionally irregular structures, and (3) the choice of 100/30 and SRSS methods to take into account the effect of the critical direction of earthquake.

  • PDF

Experiments for Side Wall Effects of a Perforated Structure Under Oblique Incident Waves (경사입사파 조건에서 유공구조물의 격벽효과에 대한 실험)

  • Lee, Jong-In;Kim, Sun Ou;Kim, Kyoung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2343-2350
    • /
    • 2013
  • The wave height distributions in front of a vertically perforated wall structures for obliquely incident uni-directional irregular waves are mainly investigated by using 3D hydraulic experiments. The difference and similarity of wave propagation along the plain and perforated wall structures are investigated and particularly the effects of side walls in chamber and relative chamber width are analyzed. This study shows that the wave height distribution patterns for normalized wave heights in front of structure is significantly different between the plain and perforated wall structures, and the side wall in the chamber suppresses the growth of waves.

A Study on the Fatigue Crack Growth Under Variable Loading of Titanium Alloy (티탄합금의 변동하중하의 피로균열진전거동)

  • Lee, Jong-Hyung;Lee, Sang-Young;Yi, Chang-Heon;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Chun-Kon;Kwon, Yung-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.201-206
    • /
    • 2007
  • Most of the fatigue fractures of various machine structures start at discontinuities or small defects. In this study property of crack growth of titanium alloy was also analyzed to investigate the difference compared with the carbon steel. Titanium alloy has very high specific strength, and the material is widely utilized in advanced engineering fields such as aerospace, atomic energy and ocean development because of its excellence in corrosion and heat resistance. Generally the machine structures experience irregular loadings rather than periodic forces. The prediction of the fatigue life therefore has been analyzed to provide fundamentals of the design and estimation of the machine structures under irregular loading conditions.

  • PDF