• Title/Summary/Keyword: irrational number

Search Result 44, Processing Time 0.028 seconds

A Study on understanding of infinite decimal (무한소수에 대한 학생들의 이해)

  • Park, Dal-Won
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.2
    • /
    • pp.237-246
    • /
    • 2007
  • According to 7-th curriculum, irrational number should be introduced using non-repeating infinite decimals. A rational number is defined by a number determined by the ratio of some integer p to some non-zero integer q in 7-th grade. In 8-th grade, A number is rational number if and only if it can be expressed as finite decimal or repeating decimal. A irrational number is defined by non-repeating infinite decimal in 9-th grade. There are misconceptions about a non-repeating infinite decimal. Although 1.4532954$\cdots$ is neither a rational number nor a irrational number, many high school students determine 1.4532954$\cdots$ is a irrational number and 0.101001001$\cdots$ is a rational number. The cause of misconceptions is the definition of a irrational number defined by non-repeating infinite decimals. It is a cause of misconception about a irrational number that a irrational number is defined by a non-repeating infinite decimals and the method of using symbol dots in infinite decimal is not defined in text books.

  • PDF

A study on the pre-service teacher's recognition and fallacy for a number with irrational exponent (무리 지수를 갖는 수에 대한 예비교사들의 인식과 오류)

  • Lee, Heon-Soo;Park, Hyung-Bin;Bea, Kang-Soo
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.323-339
    • /
    • 2011
  • The expansion of exponential law as the law of calculation of integer numbers can be a good material for the students to experience an extended configuration which is based on an algebraic principle of the performance of equivalent forms. While current textbooks described that exponential law can be expanded from natural number to integer, rational number and real number, most teachers force students to accept intuitively that the exponential law is valid although exponent is expanded into real number. However most teachers overlook explaining the value of exponent of rational number or exponent of irrational number so most students have a lot of questions whether this value is a rational number or a irrational number. Related to students' questions, most teacher said that it is out of the current curriculum and students will learn it after going to college instead of detailed answers. In this paper, we will present several examples and the values about irrational exponents of a positive rational and irrational exponents of a positive irrational number, and study the recognition and fallacy of would-be teachers about the cases of irrational exponents of a positive rational and irrational exponents of a positive irrational number at the expansion of exponential law.

The Meaning of the Definition of the Real Number by the Decimal Fractions (소수에 의한 실수 정의의 의미)

  • Byun Hee-Hyun
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.55-66
    • /
    • 2005
  • In our school mathmatics, the irrational numbers and the real numbers are defined and instructed on the basis of decimal fractions. In relation to this fact, we identified the essences of the real number and the irrational number defined by the decimal fractions through the historical analysis. It is revealed that the formation of real numbers means the numerical measurements of all magnitudes and the formation of irrational numbers means the numerical measurements of incommensurable magnitudes. Finally, we suggest instructional plan for the meaninful understanding of the real number concept.

  • PDF

Pre-Service Teachers' Understanding of the Concept and Representations of Irrational Numbers (예비교사의 무리수의 개념과 표현에 대한 이해)

  • Choi, Eunah;Kang, Hyangim
    • School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.647-666
    • /
    • 2016
  • This study investigates pre-service teacher's understanding of the concept and representations of irrational numbers. We classified the representations of irrational numbers into six categories; non-fraction, decimal, symbolic, geometric, point on a number line, approximation representation. The results of this study are as follows. First, pre-service teachers couldn't relate non-fractional definition and incommensurability of irrational numbers. Secondly, we observed the centralization tendency on symbolic representation and the little attention to other representations. Thirdly, pre-service teachers had more difficulty moving between symbolic representation and point on a number line representation of ${\pi}$ than that of $\sqrt{5}$ We suggested the concept of irrational numbers should be learned in relation to various representations of irrational numbers.

Study on learneer's understanding of the concept of irrational number in middle school (중학교 수학에서 무리수 개념에 관한 학습자의 이해 연구)

  • Park , Youn-Hee;Park , Dal-Won;Jung, In-Chul
    • Journal of the Korean School Mathematics Society
    • /
    • v.7 no.2
    • /
    • pp.99-116
    • /
    • 2004
  • This study investigates the concept of irrational number which middle school students begin to learn for the first time in their learning mathematics. Further, this explores how that concept is being taught, how much students understand that concept and things that students have difficulty in understanding relating to the concept of irrational number. Thus we try to figure out how the concept of irrational number should be taught for the most effective students' understanding. Thus, we want to provide some suggestions for teaching and learning irrationals numbers.

  • PDF

Teaching and Learning Irrational Number with Its Conceptual Aspects Stressed : Consideration of Irrational Number through the Conception of 'Incommensurability' (무리수의 개념적 측면을 강조한 교육방안: '통약불가능성'을 통한 무리수 고찰)

  • 변희현;박선용
    • School Mathematics
    • /
    • v.4 no.4
    • /
    • pp.643-655
    • /
    • 2002
  • In this paper we emphasize the introduction of ‘incommensurability’ on the teaching and learning the irrational number because we think of the origin of number as ‘ratio’. According to Greek classification of continuity as a ‘never ending’ divisibility, discrete number and continuous magnitude belong to another classes. That is, those components were dealt with respectively in category of arithmetic and that of geometry. But the comparison between magnitudes in terms of their ratios took the opportunity to relate ratios of magnitudes with numerical ratios. And at last Stevin coped with discrete and continuous quantity at the same time, using his instrumental decimal notation. We pay attention to the fact that Stevin constructed his number conception in reflecting the practice of measurement : He substituted ‘subdivision of units’ for ‘divisibility of quantities’. Number was the result of such a reflective abstraction. In other words, number was invented by regulation of measurement. Therefore, we suggest decimal representation from the point of measurement, considering the foregoing historical development of number. From the perspective that the conception of real number originated from measurement of ‘continuum’ and infinite decimals played a significant role in the ‘representation’ of measurement, decimal expression of real number should be introduced through contexts of measurement instead of being introduced as a result of algorithm.

  • PDF

A study on the in-service teacher's recognition and fallacy for irrational exponent (무리지수에 대한 교사들의 인식과 오류)

  • Lee, Heon Soo;Kim, Young Cheol;Park, Yeong Yong
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.3
    • /
    • pp.583-600
    • /
    • 2013
  • In this paper, we study the recognition and fallacy of would-be in-service teachers about numbers with irrational exponent. We chose 51 secondary school teachers who are teaching mathematics in K metropolitan city and investigate their recognition and fallacy about the cases of irrational exponents of a positive rational and irrational exponents of a positive irrational number at the expansion of exponential law. We found following facts. First, in-service teacher's a percentage of correct answers differ depending on the type of numbers with irrational exponent. Second, in-service teachers decide their answer depending on intuition rather than logic. Third, in-service teachers decide their answer depending on exponential rather than base.

  • PDF

Difficulties and Alternative Ways to learn Irrational Number Concept in terms of Notation (표기 관점에서 무리수 개념 학습의 어려움과 대안)

  • Kang, Jeong Gi
    • Journal of the Korean School Mathematics Society
    • /
    • v.19 no.1
    • /
    • pp.63-82
    • /
    • 2016
  • Mathematical notation is the main means to realize the power of mathematics. Under this perspective, this study analyzed the difficulties of learning an irrational number concept in terms of notation. I tried to find ways to overcome the difficulties arising from the notation. There are two primary ideas in the notation of irrational number using root. The first is that an irrational number should be represented by letter because it can not be expressed by decimal or fraction. The second is that $\sqrt{2}$ is a notation added the number in order to highlight the features that it can be 2 when it is squared. However it is difficult for learner to notice the reasons for using the root because the textbook does not provide the opportunity to discover. Furthermore, the reduction of the transparency for the letter in the development of history is more difficult to access from the conceptual aspects. Thus 'epistemological obstacles resulting from the double context' and 'epistemological obstacles originated by strengthening the transparency of the number' is expected. To overcome such epistemological obstacles, it is necessary to premise 'providing opportunities for development of notation' and 'an experience using the notation enhanced the transparency of the letter that the existing'. Based on these principles, this study proposed a plan consisting of six steps.

A Thought on Dealing with Repeating Decimals and Introducing Irrational Numbers (in the Middle School Mathematics) (중학교에서 순환소수 취급과 무리수 도입에 관한 고찰)

  • 김흥기
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 2004
  • According to the 7-th curriculum, irrational number should be introduced using repeating decimals in 8-th grade mathematics. To do so, the relation between rational numbers and repeating decimals such that a number is rational number if and only if it can be represented by a repeating decimal, should be examined closely Since this relation lacks clarity in some text books, irrational numbers have only slight relation with repeating decimals in those books. Furthermore, some text books introduce irrational numbers showing that $\sqrt{2}$ is not rational number, which is out of 7-th curriculum. On the other hand, if we use numeral 0 as a repetend, many results related to repeating decimals can be represented concisely. In particular, the treatments of order relation with repeating decimals in 8-th grade text books must be reconsidered.

  • PDF

A textbook analysis of irrational numbers unit: focus on the view of process and object (무리수 단원에 대한 교과서 분석 연구: 과정과 대상의 관점으로)

  • Oh, Kukhwan;Park, Jung Sook;Kwo, Oh Nam
    • The Mathematical Education
    • /
    • v.56 no.2
    • /
    • pp.131-145
    • /
    • 2017
  • The representation of irrational numbers has a key role in the learning of irrational numbers. However, transparent and finite representation of irrational numbers does not exist in school mathematics context. Therefore, many students have difficulties in understanding irrational numbers as an 'Object'. For this reason, this research explored how mathematics textbooks affected to students' understanding of irrational numbers in the view of process and object. Specifically we analyzed eight textbooks based on current curriculum and used framework based on previous research. In order to supplement the result derived from textbook analysis, we conducted questionnaires on 42 middle school students. The questions in the questionnaires were related to the representation and calculation of irrational numbers. As a result of this study, we found that mathematics textbooks develop contents in order of process-object, and using 'non repeating decimal', 'numbers cannot be represented as a quotient', 'numbers with the radical sign', 'number line' representation for irrational numbers. Students usually used a representation of non-repeating decimal, although, they used a representation of numbers with the radical sign when they operate irrational numbers. Consequently, we found that mathematics textbooks affect students to understand irrational numbers as a non-repeating irrational numbers, but mathematics textbooks have a limitation to conduce understanding of irrational numbers as an object.