• Title/Summary/Keyword: irradiation grafting

Search Result 71, Processing Time 0.025 seconds

Surface Graft Copolymerization of Acrylamide onto Polyacrylonitrile (아크릴아미드의 PAN에 대한 표면 그라프트 공중합에 관한연구)

  • 최재혁;김한도
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.144-148
    • /
    • 1993
  • To increase the moisture content and thereby to reduce the static charge of polyacrylonitrile (PAN), thin layer surface photografting of acylamide (AAm) onto PAN fabrics by using benzophenone as a initiator with a mixtured solvent was carried. The effects of reaction conditions such as monomer, initiator concentrations, UV irradiation time and immersion time of fabrics on grafting were investigated. The percent grafting slightly increased with increasing monomer concentration, benzophenone concentration up to limiting value and thereafter decreased or level offed. The percent grafting was significantly increased with increasing irradiation and immersion times. The moisture regain increased with increasing the percent grafting. The static charge decreased with increasing the percent grafting.

  • PDF

Applications of Irradiation to Polyethylene for Flame Retarded Wire and Cable Insulation (방사선에 의한 폴리에칠렌의 난연성전선 및 케이블에 관한 연구)

  • Young Kun Kong;Hoon Seun Chang;Chong Kwang Lee;Jae Ho Choi
    • Nuclear Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.245-253
    • /
    • 1981
  • The properties of polyethylene materials exhibit good insulation and radiation resistance, but exhibit poor flame resistance. Flame retardant properties of the polyethylene were improved by the radiation induced grafting or crosslinking. When the various flame retardants were fixed onto polyethylene, the amount of fixation in grafting was increased with the increase of radiation dosages. In the case of grafting, it is necessary for high grafting yield that the polyethylene films were swelled before irradiation with ${\gamma}$-rays or electron beams. It is the suitable method for the fixation of flame retardant that polyethylene samples were blended with various flame retardants at 1$25^{\circ}C$ and then blended polymers were crosslinked by the electron beams at room temperature.

  • PDF

Surface Modification of Polypropylene Membrane by ${\gamma}$ Irradiation Methods and their Solutes Permeation Behaviors

  • Shim, J. K.;Lee, S. H.;Kwon, O. H.;Lee, Y. M.;Nho, Y. C.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.99-101
    • /
    • 1998
  • 1. Introduction : The conventional grafting polymerization technique requires chemically reactive groups on the surface as well as on the polymer chains. For this reason, a series of prefunctionalization steps are necessary for covalent grafting. The surface prefunctionalizational technique for grafting can be used to ionization radiation, UV, plasma, ion beam or chemical initiators. Of these techniques, radiation method is one of the useful methods because of uniform and rapid creation of active radical sites without catalytic contamination in grafted samples. If the diffusion of monomer into polymer is large enough to come to the inside of polymer substrate, a homogeneous and uniform grafting reaction can be carried out throughout the whole polymer substrate. Radiation-induced grafting method may attach specific functional moieties to a polymeric substrate, such as preirradiation and simultaneous irradiation. The former is irradiated at backbone polymer in vacuum or nitrogen gas and air, and then subsequent monomer grafting by trapped or peroxy radicals, while the latter is irradiated at backbone polymer in the presence of the monomer. Therefore, radiation-induced polymerization can be used to modification of the chemical and physical properties of the polymeric materials and has attracted considerable interest because it imparts desirable properties such as blood compatibility. membrane quality, ion excahnge, dyeability, protein adsorption, and immobilization of bioactive materials. Synthesizing biocompatible materials by radiation method such as preirradiation or simultaneous irradiation has often used $\gamma$-rays to graft hydrophilic monomers onto hydrophobic polymer substrates. In this work, in attempt to produce surfaces that show low levels of anti-fouling of bovine serum albumin(BSA) solutions, hydroxyethyl methacrylate(HEMA) was grafted polypropylene membrane surfaces by preirradiation technique. The anti-fouling effect of the polypropylene membrane after grafting was examined by permeation BSA solution.

  • PDF

Preparation and Characterization of Acrylic Acid Grafted Polypropylene Nonwoven Fabric (아크릴산 그라프트 폴리프로필렌 부직포의 제조와 특성)

  • Kim, Sang-Yool;Na, Choon-Ki
    • Fashion & Textile Research Journal
    • /
    • v.6 no.3
    • /
    • pp.384-392
    • /
    • 2004
  • The purpose of this study is in development of effective filter-type polymer adsorbent for removal of pollutants from wastewater by UV irradiation graft polymerization. Photografting of acrylic acid (AA) on polypropylene (PP) nonwoven fabric using benzophenone (BP) as a photosensitizer was investigated. Inhibition of homopolymerization was achieved by adding various concentrations of $FeSO_4{\cdot}7H_2O$, $CuSO_4{\cdot}5H_2O$ and Mohr's salt. As AA concentration was increased, the degree of grafting was increased as to a specific value and then decreased, and the effect of BP concentration showed the same tendency. It was also found that the degree of grafting increased with reaction time and reaction temperature. Addition of the polyfunctional monomers and $H_2SO_4$ to the grafting system accelerated the photografting. The melting temperature, molecular weight and breaking stress and breaking strain were decreased with the increase in the degree of grafting.

Introduction of Carboxylic Acid Group onto Polyethylene Film By Electron Beam

  • Kang, Hae-Jeong;Park, Jang-Seong;Lee, Kwang-Pill;Park, Seong-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2000.04a
    • /
    • pp.139-141
    • /
    • 2000
  • Carboxylic acid group was introduced onto polyethylene (PE) film by the grafting of acrylic acid onto PE film irradiated with electron beam. The grafting Condition such as reaction temperature, additives, total irradiation dose, thickness of PE film, and monomer concentration was examined. The extent of grafting was found to increase with increasing reaction temperature and total irradiation dose. The grafting yield was much enhanced with the addition of both FeSO$_4$ 7H$_2$O and H$_2$SO$_4$.

  • PDF

Preparation of Acrylic Acid-grafted Kenaf Fibers Using E-beam Irradiation and Evaluation of Permeability of Kenaf Fiber-cement Composites (전자선을 이용한 아크릴산 그라프트 케냐프 섬유의 제조 및 이를 이용한 케냐프 섬유보강 시멘트의 투수특성 평가)

  • Kim, Du Yeong;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.53-57
    • /
    • 2014
  • The kenaf is quickly developing as a renewable resource. Kenaf can be grown under a wide range of weather conditions. Modification of kenaf fiber by graft polymerization provides a significant route to alter the chemical properties, including surface hydrophilicity or hydrophobicity. In this study, kenaf fiber surfaces were grafted with acrylic acid as a hydrophilic group using electron beam irradiation. The grafting rate increased with an increase in grafting time. The FT-IR results confirmed that acrylic acid was successfully grafted onto the kenaf fibers. The wettability of the kenaf fiber was increased, accompanied by acylic acid grafting on the fiber surface. According to the permeability test result, it was found that acrylic acid grafted kenaf fiber reinforced cement composite was more reduced than non-grafted kenaf fiber reinforced cement composite.

Graft copolymerization of GMA and EDMA on PVDF to hydrophilic surface modification by electron beam irradiation

  • Lim, Seung Joo;Shin, In Hwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.373-380
    • /
    • 2020
  • This study was carried out to convert the hydrophobic characteristics of PVDF to hydrophilic. Poly(-vinylidene fluorine) (PVDF) was grafted by electron beam irradiation and sulfonated. The grafting degree of modified PVDF increased with the monomer concentration, but not the conversion degree. From the results of FTIR and XPS, it was shown that the amount of converted sulfur increased with the grafting degree. The radiation-induced graft polymerization led to decrease fluorine from 35.7% to 21.3%. Meanwhile, the oxygen and sulfur content increased up to 8.1% and 3.2%. The pore size of modified membranes was shrunken and the roughness sharply decreased after irradiation. The ion exchange capacity and contact angle were investigated to show the characteristics of PVDF. The enhanced ion exchange capacity and lower contact angle of modified PVDF showed that the hydrophilicity played a role in determining membrane fouling. Electron beam irradiation successfully modified the hydrophobic characteristics of PVDF to hydrophilic.

Preparation of Poly(styrene-co-(trimethoxysilyl)propyl methacrylate)-grafted ETFE Films by a Simultaneous Irradiation Grafting Method (방사선을 이용한 스티렌-TMSPM 공중합체가 그래프트된 ETFE 필름의 제조)

  • Sung, Hae-Jun;Sohn, Joon-Yong;Song, Ju-Myung;Shin, Jun-Hwa;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.478-482
    • /
    • 2011
  • In this study, several poly(styrene-co-(trimethoxysilyl)propyl methacrylate)-grafted ETFE films were prepared by a simultaneous irradiation grafting method. After mixing of styrene/(trimethoxysilyl)propyl methacrylate(TMSPM) monomers with various solvents, the effects of various irradiation conditions such as total dose, dose rate and monomer concentration on the degree of grafting of the prepared membranes were investigated. Results indicated that the higher degree of grafting was obtained when acetone was used as a solvent. The formation of poly(styrene-co-TMSPM) grafts on the ETFE films was verified using FTIR spectrometry and the distribution of the poly(PTMSPM) graft polymer over the cross-section of the grafted film was confirmed using SEM-EDX instrument.

Radiation-Induced Grafting of Acrylic Acid onto Polypropylene Fabric in the Presence of Metallic Salt (폴리프로필렌 부직포에 아크릴산의 방사선 그라프트 반응에서 금속염의 효과)

  • Nho, Young Chang;Park, Jong Shin;Jin, Joon-Ha
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.946-953
    • /
    • 1996
  • The effect of absorbed dose, dose rate, cationic salts and solvent on the grafting yield was evaluated when acrylic acid was grafted onto polypropylene fabric by simultaneous irradiation process. Low dose rate when irradiated with the same absorbed dose led to a high grafting yield. On the other hand, the grafting yield increased with dose rate in case the total irradiation times is equal, and the initial rate of grafting was found to be proportional to be 0.74 power of dose rate. $FeSO_4{\cdot}7H_2O$ was found to be the most effective additive for high grafting yield, while inhibiting homopolymer formation. It was impossible to induce radiation grafting without the addition of the certain amount of salt, but the grafting yield decreased with increasing metallic salt.

  • PDF

A Study on the Graft Distribution of the FEP-g-PSSA Membranes Prepared by a Simultaneous Irradiation Method (방사선 동시조사법에 의해 제조된 FEP-g-PSSA 막의 그래프트 분포에 관한 연구)

  • Ko, Beom-Seok;Shin, Jun-Hwa;Sohn, Joon-Yong;Nho, Young-Chang;Kang, Phil-Hyun
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.268-271
    • /
    • 2009
  • In this study, the distribution behaviors of the polystyrene sulfonic acid (PSSA) grafting polymer across the FEP-g-PSSA membranes prepared by a simultaneous irradiation method, were investigated by analyzing the cross-section of the membranes with a SEM-EDX instrument. The effects of irradiation conditions such as the degree of grafting, FEP film thickness, and grafting solvent on the distribution of the grafting polymer were mainly studied in this experiment. The results indicate that to obtain the evenly grafted FEP-g-PSSA membranes, the higher degree of grafting is required as the film thickness increases, and the lower dose rate are more effective than the higher dose rate at the given dose.