DOI QR코드

DOI QR Code

Graft copolymerization of GMA and EDMA on PVDF to hydrophilic surface modification by electron beam irradiation

  • Lim, Seung Joo (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Shin, In Hwan (Department of Civil, Environmental & Architectural Engineering, Korea University)
  • Received : 2019.01.22
  • Accepted : 2019.07.15
  • Published : 2020.02.25

Abstract

This study was carried out to convert the hydrophobic characteristics of PVDF to hydrophilic. Poly(-vinylidene fluorine) (PVDF) was grafted by electron beam irradiation and sulfonated. The grafting degree of modified PVDF increased with the monomer concentration, but not the conversion degree. From the results of FTIR and XPS, it was shown that the amount of converted sulfur increased with the grafting degree. The radiation-induced graft polymerization led to decrease fluorine from 35.7% to 21.3%. Meanwhile, the oxygen and sulfur content increased up to 8.1% and 3.2%. The pore size of modified membranes was shrunken and the roughness sharply decreased after irradiation. The ion exchange capacity and contact angle were investigated to show the characteristics of PVDF. The enhanced ion exchange capacity and lower contact angle of modified PVDF showed that the hydrophilicity played a role in determining membrane fouling. Electron beam irradiation successfully modified the hydrophobic characteristics of PVDF to hydrophilic.

Keywords

References

  1. I. Ruigomez, L. Vera, E. Gonzalez, G. Gonzalez, A novel rotating HF membrane to control fouling on anaerobic membrane bioreactors treating wastewater, J. Membr. Sci. 501 (2016) 45-52. https://doi.org/10.1016/j.memsci.2015.12.011
  2. Z. Wang, J. Ma, C.Y. Tang, K. Kimura, Q. Wang, X. Han, Membrane cleaning in membrane bioreactors: a review, J. Membr. Sci. 468 (2014) 276-307. https://doi.org/10.1016/j.memsci.2014.05.060
  3. M. Grasselli, N. Betz, Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF, Nucl. Instrum. Methods Phys. Res. B 236 (2005) 201-207.
  4. M.M. Nasef, H. Saidi, H.M. Nor, O.M. Foo, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. II. Characterization of sulfonated graft copolymer membranes, J. Appl. Polym. Sci. 76 (2000) 1-11. https://doi.org/10.1002/(SICI)1097-4628(20000404)76:1<1::AID-APP1>3.0.CO;2-4
  5. C. Mao, W.B. Zhao, A.P. Zhu, J. Shen, S.C. Lin, A photochemical method for the surface modification of poly(vinyl chloride) with O-butyrylchitosan to improve blood compatibility, Process Biochem. 39 (2004) 1151-1157. https://doi.org/10.1016/S0032-9592(03)00225-5
  6. Y. Xiao, X.D. Liu, D.X. Wang, Y.K. Lin, Y.P. Han, X.L. Wang, Feasibility of using an innovative PVDF MF membrane prior to RO for reuse of a secondary municipal effluent, Desalination 311 (2013) 16-23. https://doi.org/10.1016/j.desal.2012.10.022
  7. G. Kang, Y. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranesda review, J. Membr. Sci. 463 (2014) 145-165. https://doi.org/10.1016/j.memsci.2014.03.055
  8. M.J. Han, G.N.B. Barona, B. Jung, Effect of surface charge on hydrophilically modified poly(vinylidene fluoride) membrane for microfiltration, Desalination 270 (2011) 76-83. https://doi.org/10.1016/j.desal.2010.11.024
  9. M. Ulbricht, Advanced polymer membranes, Polymer 47 (2006) 2217-2262. https://doi.org/10.1016/j.polymer.2006.01.084
  10. V. Kochkodan, D.J. Johnson, N. Hilal, Polymeric membranes: surface modification for minimizing (bio)colloidal fouling, Adv. Colloid Interface Sci. 206 (2014) 116-140. https://doi.org/10.1016/j.cis.2013.05.005
  11. V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation, Desalination 356 (2015) 187-207. https://doi.org/10.1016/j.desal.2014.09.015
  12. T.R. Dargaville, G.A. George, D.J.T. Hill, A.K. Whittaker, High energy radiation grafting of fluoropolymers, Prog. Polym. Sci. 28 (2003) 1355-1376. https://doi.org/10.1016/S0079-6700(03)00047-9
  13. F. Liu, B. Zhu, Y. Xu, Improving the hydrophilicity of poly(vinylidene fluorine) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers, Appl. Surf. Sci. 253 (2006) 2096-2101. https://doi.org/10.1016/j.apsusc.2006.04.007
  14. Q. Qiu, Z. Hou, X. Lu, X. Bian, L. Chen, L. Shen, S. Wang, Microfiltration membranes prepared from poly(N-vinyl-2-pyrrolidone) grafted poly(-vinylidene fluorine) synthesized by simultaneous irradiation, J. Membr. Sci. 427 (2013) 303-310. https://doi.org/10.1016/j.memsci.2012.09.059
  15. M.L. Zhai, S. Hasegawa, J.H. Chen, Y. Maekawa, Radiation-induced grafting of perfluorinated vinyl ether into fluorinated polymer films, J. Fluorine Chem. 129 (2008) 1146-1149. https://doi.org/10.1016/j.jfluchem.2008.08.004
  16. T. Sehgal, S. Rattan, Modification of isotactic polypropylene film by radiationinduced graft copolymerization, J. Radioanal. Nucl. Chem. 286 (2010) 71-80. https://doi.org/10.1007/s10967-010-0626-1
  17. S.D. Poynton, J.R. Varcoe, Reduction of the monomer quantities required for the preparation of radiation-grafted alkaline anion-exchange membranes, Solid State Ion. 277 (2015) 38-43. https://doi.org/10.1016/j.ssi.2015.04.013
  18. D.W. O'Connell, C. Birkinshaw, T.F. O'Dwyer, Heavy metal adsorbents prepared from the modification of cellulose: a review, Bioresour. Technol. 99 (2008) 6709-6724. https://doi.org/10.1016/j.biortech.2008.01.036
  19. M. Grasselli, N. Betz, Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF, Nucl. Instrum. Methods B. 236 (2005) 201-207.
  20. L. Shen, S. Feng, J. Li, J. Chen, F. Li, H. Lin, G. Yu, Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance, Sci. Rep. 7 (2017) 2721-2734. https://doi.org/10.1038/s41598-017-02605-3
  21. J. Meng, C. Chen, L. Huang, Q. Du, Y. Zhang, Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface, Appl. Surf. Sci. 257 (2011) 6282-6290. https://doi.org/10.1016/j.apsusc.2011.02.062
  22. I.H. Shin, S. Hong, S.J. Lim, Y. Son, T. Kim, Surface modification of PVDF membrane by radiation-induced graft polymerization for novel membrane bioreactor, J. Ind. Eng. Chem. 46 (2017) 103-110. https://doi.org/10.1016/j.jiec.2016.10.020
  23. B. Han, J. Kim, Y. Kim, W. Chung, I.E. Makarov, A.V. Ponomarev, A.K. Pikaev, Combined electron-beam and biological treatment of dying complex wastewater, Pilot plant experiments, Radiat. Phys. Chem. 64 (2002) 53-59. https://doi.org/10.1016/S0969-806X(01)00452-2
  24. A. Tager, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, N.A. Ochoa, S.P. Nunes, K.V. Peinemann, Ion exchange membrane compaction and its influence on ultrafiltration water permeability, J. Membr. Sci. 100 (1995) 155-162. https://doi.org/10.1016/0376-7388(94)00263-X
  25. G.M. Estrada-Villegas, E. Bucio, Comparative study of grafting a polyampholyte in a fluoropolymer membrane by gamma radiation in one or twosteps, Radiat. Phys. Chem. 92 (2013) 61-65. https://doi.org/10.1016/j.radphyschem.2013.07.015
  26. J. Park, K. Enomoto, T. Yamashita, Y. Takagi, K. Todaka, Y. Maekawa, Polymerization mechanism for radiation-induced grafting of styrene into alicyclic polyimide films for preparation of polymer electrolyte membranes, J. Membr. Sci. 438 (2013) 1-7. https://doi.org/10.1016/j.memsci.2013.03.007
  27. K. Sunaga, M. Kim, K. Saito, K. Sugita, T. Sugo, Characteristics of porous anionexchange membranes prepared by cografting of glycidyl methacrylate with divinylbenzene, Chem. Mater. 11 (1999) 1986-1989. https://doi.org/10.1021/cm980490i
  28. K. Saito, K. Saito, K. Sugita, M. Tamada, T. Sugo, Cation-exchange porous hollow-fiber membranes prepared by radiation-induced cografting of GMA and EDMA which improved pure water permeability and sodium ion adsorptivity, Ind. Eng. Chem. Res. 41 (2002) 5686-5691. https://doi.org/10.1021/ie010438n
  29. S. Lanceros-Mendez, J.F. Mano, A.M. Costa, V. Schmidt, FTIR and DSC studies of mechanically deformed $\beta$-PVDF films, J. Macromol. Sci. Part B 40 (2001) 517-527. https://doi.org/10.1081/MB-100106174
  30. B. Deng, Y. Ming, X. Yang, B. Zhang, L. Li, L. Xie, J. Li, X. Lu, Antifouling microfiltration membranes prepared from acryilic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation included graft polymerization, J. Membr. Sci. 350 (2010) 252-258. https://doi.org/10.1016/j.memsci.2009.12.035
  31. W. Lee, Y. Kim, M. Jung, D. Kim, D. Cho, S. Kang, Preperation and properties of conducting polypyrrole-sulfonated polycarbonate composites, Synth. Mat. 123 (2001) 327-333.
  32. Choi, Y. Kim, M. Preparation and characterization of polyvinylidene fluoride by irradiating electron beam. Appl. Chem. Eng. 22, 353-357.
  33. M.A. Masuelli, M. Grasselli, J. Marchese, N.A. Ochoa, Preparation, structure and functional characterization of modified porous PVDF membranes by ${\gamma}$-irradiation, J. Membr. Sci. 389 (2012) 91-98. https://doi.org/10.1016/j.memsci.2011.10.019
  34. J.K. Shim, H.S. Na, Y.S. Lee, H. Huh, Y.C. Nho, Surface modification of polypropylene membranes by ${\gamma}$-ray induced graft copolymerization and their solute permeation characteristics, J. Membr. Sci. 190 (2001) 215-226. https://doi.org/10.1016/S0376-7388(01)00445-8
  35. M. Li, J. Li, X. Shao, J. Miao, J. Wang, Q. Zhang, X. Xu, Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique, J. Membr. Sci. 405-406 (2012) 141-148. https://doi.org/10.1016/j.memsci.2012.02.062
  36. S. Wang, Y. Li, X. Fei, M. Sun, C. Zhang, Y. Li, Q. Yang, X. Hong, Preparation of a durable superhydrophobic membrane by electrospinning poly(vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified $SiO_2$ nanoparticle: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle, J. Colloid Interface Sci. 359 (2011) 380-388. https://doi.org/10.1016/j.jcis.2011.04.004

Cited by

  1. Superwettable PVDF/PVDF-g-PEGMA Ultrafiltration Membranes vol.5, pp.36, 2020, https://doi.org/10.1021/acsomega.0c03429
  2. Antibacterial Properties of Plasma-Activated Perfluorinated Substrates with Silver Nanoclusters Deposition vol.11, pp.1, 2021, https://doi.org/10.3390/nano11010182
  3. Insight on the properties of thermoplastic elastomer-based natural rubber and recycled rubber post-treated with electron beam irradiation vol.8, pp.2, 2020, https://doi.org/10.1088/2053-1591/abe064
  4. Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications vol.13, pp.18, 2020, https://doi.org/10.3390/polym13183102
  5. Assessing the radiation-induced graft polymeric adsorbents with emphasis on heavy metals removing: A systematic literature review vol.44, 2020, https://doi.org/10.1016/j.jwpe.2021.102371