• Title/Summary/Keyword: irradiation biological activities

Search Result 62, Processing Time 0.03 seconds

Biochemical Effect on Potato Tubers Irradiated by Gamma-Ray at Sprout-Inhibition Dose (방사선 조사에 의한 감자 발아 억제시 생화학적 효과)

  • Jeon, J.H.;Byun, S.M.;Chang, Y.S.P.;Chung, K.H.;Cho, H.O.
    • Applied Biological Chemistry
    • /
    • v.28 no.1
    • /
    • pp.28-35
    • /
    • 1985
  • Potato tubers treated at $4^{\circ}C$ for 4 weeks were irradiated with a dose of 0.12 kGy from $^{60}Co$ source and stored at $20^{\circ}C,\;70{\sim}90%$ humidity for 5 weeks. Changes of ${\alpha}-amylase$, peroxidase, indole acetic acid oxidase, indole acetic acid synthesizing enzyme activities were determined. In addition, treatment of gibberellin or indole acetic acid to tubers irradiated were carried out to examine reversal of sprout-inhibition of tubers irradiated. Results are as follows; 1. Irradiation by ${\gamma}-ray$ at 0. 12 kGy dose inactivated easily the enzyme activities in vitro. $D_{37}$ values obtained were 0.94, 0.36 kGy for ${\alpha}-amylase$ and peroxidase, respectively 2. Complete inhibition of the toter sprouting was resulted by the irradiation of tubers with a dose of 0.12 kGy. 3. The indole acetic acid oxidase activity increased 2 times immediately after irradiation. Meanwhile, indole acetic acid synthesizing activity decreased about $50{\sim}75%$ for 5-week storage in irradiated potatoes, whereas the activity increased about 3.5 times along with sprouting in non-irradiated tubers. 4. In morphological aspects, deformed buds with necrosis in the meristmatic tissue were developed in irradiated tubers. Treatment of gibberellin or indole acetic acid at the concentration of 100 or 20 ppm to the irradiated tubers reversed the sprout-inhibition partially. Nevertheless, the deformed buds remained without change.

  • PDF

Effect of Far-Infrared Irradiation and Heat Treatment on the Antioxidant Activity of Extracts from Defatted Soybean Meal (원적외선 조사와 열처리가 탈지대두박 추출물의 항산화능에 미치는 영향)

  • Rim, A-Ram;Jung, Eun-Sil;Kim, So-Young;Lee, Seung-Cheol
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.400-403
    • /
    • 2005
  • The effect of far-infrared (FIR) irradiation and heat treatment on the antioxidant activity of extracts from defatted soybean meal (DSM) was evaluated. DSM were placed in pyrex petri dishes (8.0 cm diameter) and irradiated at $150^{\circ}C$ for 5, 10, 15, 20, 40 or 60 min with a FIR heater or simple heater. After FIR irradiation or simple heat treatment at same conditions, methanol extracts of DSM were prepared and total phenol contents (TPC), radical scavenging activity (RSA) and reducing power of the extracts were determined. The antioxidant activities of the extracts increased as the time of heating or FIR-irradiation increased. When DSM were FIR-irradiated at $150^{\circ}C$ for 15 min, the values of TPC, RSA, and reducing power of the extracts increased from 31.62 mg/ml to 57.51 mg/ml, 11.6% to 53.1%, and 0.068 to 0.147, respectively, compared to the untreated controls. Simple heat treatment of DSM under the same conditions ($150^{\circ}C$ for 15 min) also increased the TPC, RSA, and reducing power of the extracts from to 58.04 mg/ml, 65.2% and 0.160, respectively. The results indicated that appropriate FIR-irradiation or heat treatment on DSM increased the antioxidant activities of methanolic extracts.

Microwave Assisted One-pot Synthesis of Novel α-Aminophosphonates and heir Biological Activity

  • Rao, Alahari Janardhan;Rao, Pasupuleti Visweswara;Rao, Valsani Koteswara;Mohan, Challamchalla;Raju, Chamarthi Naga;Reddy, Cirandur Suresh
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1863-1868
    • /
    • 2010
  • A simple and efficient synthesis of various $\alpha$-aminophosphonates (3a-l) by the reaction of substituted aromatic/heterocyclic aldehydes, 2-amino-6-methoxy-benzothiazole and dibutyl/diphenyl phosphites under microwave irradiation without catalyst was accomplished. The phosphonates were characterized by elemental analysis, IR, $^1H$, $^{13}C$- and $^{31}PNMR$ spectra. They showed promising antimicrobial, anti-oxidant activities depending on the nature of bioactive groups at the $\alpha$-carbon.

Antifntique Effect and Improvement of Hematotoxicity by Dongchongxiacno (Paecilomyces japonica ) (누에동충하초(Paecilomyces japonica)의 항피로효과 및 조혈장해 개선효과)

  • 김세라;조성기;안미영;신동호;김성호
    • Journal of Veterinary Clinics
    • /
    • v.19 no.3
    • /
    • pp.328-332
    • /
    • 2002
  • Cordyceps is reputed for its broad biological activities and as a tonic for replenishing vital function in Chinese traditional medicines. As an attempt to obtain fundamental data for the development of new type Cordyceps, the effects of the fruiting bodies of cultivated fungus of Paecilomyces japonica grown on silkworm larvae on fatigue and hematotoxicity were investigated. The antifatigue activity of dongchongxiacao (Paecilomyces japonica) was studied in mice using weight loaded forced swimming performance method. The water extract of dongchongxiacao(25 mg/kg of body weight, intraperitoneal injection at 12 and 36 hours before irradiation and 30 minute and 24 hours after irradiation) showed a significant antifatigue effect in normal mice and radiation-induced fatigue mice (p<0.0005). In the experiment on the improvement of hematotoxicity, a significant difference from the irradiated controls was seen at day 3 of the group treated with dongchongxiacao and substantial differences from the irradiated controls at day 7 was also detected.

Effect of Far-Infrared Irradiation and Heat Treatment on the Antioxidant Activity of Extracts from Citrus Pomaces (감귤박 추출물의 항산화능에 대한 원적외선과 열처리 효과)

  • Kim, Jong-Wan;Jeon, You-Jin;Lee, Jonh-Hwa;Lee, Seung-Cheol
    • Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.60-64
    • /
    • 2006
  • The effect of far-infrared (FIR) irradiation and heat treatment on the antioxidant activity of extracts from citrus pomaces (CP) was evaluated. CP were placed in pyrex petri dishes (8.0 cm diameter) and irradiated at $100^{\circ}C$ and $150^{\circ}C$ for 5, 10, 15, 20, 40 or 60 min with a FIR heater or simple heater, respectively. After FIR irradiation or simple heat treatment, 70% ethanol extracts (EE) and water extracts (WE) of CP were prepared and radical scavenging activity (RSA) and reducing power of the extracts were determined. The antioxidant activities of the extracts increased as the time of heating or FIR-irradiation increased. When CP were FIR-irradiated at $100^{\circ}C$ far 30min, the values of RSA and reducing power of EE increased from 14.9% to 44.2%, and 0.290 to 0.886, respectively, compared to the untreated control. Simple heat treatment of CP at $100^{\circ}C$ for 60 min also increased RSA and reducing power of EE to 44.7%, and 1.045, respectively. FIR irradiation and heat treatment increased RSA and reducing power of WE from CP, too. These results indicated the antioxidant activity of CP extracts was significantly affected by FIR irradiation and heating temperature and duration on CP, and that the FIR irradiation and heat treatment process can be used as a tool for increasing the antioxidant activity of CP.

Effects of Gamma Irradiation on Color Changes and Biological Activities of Ethanol Extract of a Mechanically Pressed Juice of Bokbunja (Rubus coreanus Miq.) (감마선 조사에 의한 복분자 착즙액 에탄올 추출물의 색상 및 생리활성 변화)

  • Kim, Hee-Jung;Jo, Cheor-Un;Kim, Hyun-Joo;Shin, Dong-Hwa;Son, Jun-Ho;Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.271-277
    • /
    • 2006
  • A mechanically pressed juice of Bokbunja (Rubus coreanus Miq.) extract was prepared using 70% ethanol solution. The extract was subjected to gamma-irradiation treatment (20 kGy) and investigated for its change of color and biological activities. Hunter $L^*$ values of the irradiated Bokbunja extract were increased in comparison with the non-irradiated extracts, and the $a^*\;and\;b^*$values decreased by the irradiation treatment. The content of the total phenolic compounds in the non-irradiated and irradiated extracts were 58.4 and 56.5 mg/g, respectively. The 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical scavenging activities of non-irradiated and irradiated extracts at a 250 ppm level were 80% and 79%, respectively. Lipid oxidation was retarded by addition of Bokbunja powder. Nitrite scavenging activity was the highest in the Bokbunja powder at pH 1.2 and the effect was not changed by irradiation. The Bokbunja powder showed antimicrobial activity against Salmonella Typhimurium and Bacillus cereus. However, irradiation of Bokbunja did not affect any physiological functions (p>0.05). A Salmonella mutagenicity assay indicated that the irradiated Bokbunja extract did not show any mutagenicity. Therefore, Bokbunja extract could be used in various applications as a functional material, such as ingredients of food and cosmetic, compositions with functions.

The Physicochemical Stabilities and Antimicrobial Activities of Pigment Extracts from Zooshikella sp. 17TA (Zooshikella sp. 17TA 색소 추출물의 물리화학적 안정성과 항균활성)

  • Park, Jae-Myeong;Park, Jin-Sook
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.89-93
    • /
    • 2019
  • In this study, the stability of the extracted natural pigments against light, temperature, pH, metal ions, and antimicrobial activity were evaluated in marine bacteria Zooshikella sp. 17TA. The pigment of the strain used in the study was red with maximum absorption at a wavelength of 541 nm. The stability of the pigment was evaluated by measuring the absorbance while preserving for 15 days and examining the retention rate. After 15 days of irradiation, the pigment of this bacterium showed 98% retention in the dark and 91% retention in the temperature range of -20℃ ~ 30℃. When the pH was in the range 4-7, the retention was about 80%, and the retention rate was higher than 85% for all kinds of metal ions except for CuCl2, ZnCl2, and KCl. The bacterial pigments showed high stability under the given irradiated pH, temperature, and metal ion conditions and had shown activity against gram-positive strains. These results suggest that this highly conserved microbial pigment can be applied to the food industry.

Cold Pasteurization of Frozen Crushed Garlics using Electron Beam Irradiation and the Stability of Bioactive Components (냉동다진마늘에 대한 전자선 살균 효과와 생리활성 성분의 안정성)

  • Lee, Hyun-Gyu;Jo, Yunhee;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Recently, the market for ready-to-use vegetables has increased largely due to consumer demands, which led to the production of minimally-processed frozen crushed garlic products. This study was designed to determine the effect of electron beam irradiation (0-7 kGy) on microbial decontamination, bioactive compounds, and antimicrobial activities of frozen crushed garlic obtained from Korea and China. The microbial counts (total bacteria, yeasts & molds) were reduced from log 3-4 CFU/g to non-detectable levels as a result of irradiation at 4 kGy. Irradiation treatment at 4 kGy did not affect the amount of alliin, allicin, total pyruvate, and total thiosulfinate of crushed garlic, however, this dose induced insignificant changes in antibacterial activities against pathogenic bacteria including Bacillus subtilis, Staphylococcus aureus, Salmonella enteritidis, Vibrio parahaemolyticus, and Yersinia enterocolitica. Therefore, electron beam irradiation less than 4 kGy can be considered suitable to improve the microbial decontamination without altering the biological activity of frozen garlics.

Improvement of Cellobiose Dehydrogenase(CDH) and $\beta$-Glucosidase Activity by Phanerochaete chrysosporium Mutant (Phanerochaete chrysosporium 변이주에서의 Cellobiose Dehydrogenase(CDH)와 $\beta$-Glucosidase 활성 향상)

  • Kim, Eun-Ji;Kang, Seong-Woo;Song, Kwang-Ho;Han, Sung-Ok;Kim, Jae-Jin;Kim, Seung-Wook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.101-104
    • /
    • 2011
  • Cellobiose dehydrogenase(CDH) as a hemoflavoenzyme is secreted out of cell in the cellulose degradation. As CDH strongly bound to amorphous cellulose, it helps cellulose hydrolysis by cellulase. CDH may have an important role of saccharification process for bioethanol production. In this study, Phanerochaete chrysosporium ATCC 32629 was selected for the production of CDH among other strains tested. The optimal temperature and pH of CDH produced by P. chrysosporium ATCC 32629 were ${55^{\circ}C}$ and 4, respectively. To improve the activity of CDH, the mutation of P. chrysosporium was performed using proton beam that has high energy level partially. As a result, P. chrysosporium mutant with the high activity was selected at 1.2 kGy in a range of 99.9% lethal rate. The CDH and $\beta$-glucosidase activities of mutant were 1.4 fold and 20 fold higher than those of wild strain. Therefore, P. chrysosporium mutant with the high activities of CDH and $\beta$-glucosidase was obtained from mutation by proton beam irradiation.