• Title/Summary/Keyword: iron-manganese removal

Search Result 32, Processing Time 0.027 seconds

Removal of Soluble Mn(II) using Multifunctional Sand Coated with both Fe- and Mn-oxides (철과 망간이 동시에 코팅된 다기능성 모래를 이용한 용존 Mn(II) 제거)

  • Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2010
  • This study evaluated treatability of soluble Mn(II) using multifunctional sand media simultaneously coated with iron and manganese. In the preparation of IMCS(Iron and Manganese Coated Sand), 0.05 M Mn(II) solution and Fe(III) solution was mixed with sand at pH 7. The mineral type of IMCS was identified as the mixture of ${\gamma}-MnO_2$, goethite and magnetite($F_{e3}O_4$). The contents of Mn and Fe coated onto sand were 826 and 1676 mg/kg, respectively. The $pH_{pzc}$ of IMCS was measured as 6.40. The removal of soluble Mn(II) using IMCS and oxidants such as NaOCl and $KMnO_4$ was investigated with variation of the solution pH, reaction time and Mn(II) concentration in a batch test. The removal of Mn(II) on IMCS was 34% at pH 7.4 and the removals of Mn(II) on IMCS in the presence of NaOCl(13.6 mg/L) at pH 7 and $KMnO_4$(4.8 mg/L) at pH 7.6 were 96% and 89%, respectively. The removal of Mn(II) using IMCS and oxidants followed a typical cationic type, showing a gradual increase of removal as the solution pH increased. The removal of Mn(II) was rapid in the first 6 hrs and then a constant removal was observed. The maximum removed amount of Mn(II) on IMCS-alone and IMCS in the presence of oxidants such as NaOCl(13.6 mg/L) and $KMnO_4$(4.8mg/L) were 833.3, 1428.6 and 1666.7 mg/kg, respectively. Mn(II) removal onto the IMCS in the presence of oxidants was well described by second-order reaction and Langmuir isotherm expression.

Simultaneous Removal of SO$_2$ and NO by Using Metal Oxide( II ) -Oxidative Sorption of SO$_2$ by Metal Oxide- (금속산화물을 이용한 이산화황과 산화질소의 동시재거( II ) -금속산화물과 이산화황의 반응-)

  • 신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.26-33
    • /
    • 1991
  • To remove SO$_2$ from flus gas, cupric oxide, manganese oxide and iron oxide were studied with varying loading value. The experiment was carried out in a flow reactor and the reactants were prepared by impregnation method using alumina. The reaction temperature was varied from 30$0^{\circ}C$ to 45$0^{\circ}C$. Experimental results showed that all of these metal oxides were effective on SO$_2$ removal reaction and cupric oxide was the best reactant. The sample with 10wt% loading value was better reactant than with 20wt% because in case of 20wt% loading, metal dispersion on the alumina surface was not uniform. And the SO$_2$ removal efficiency was increased with the reaction temperature.

  • PDF

Removal of As(III) by Pilot-Scale Filtration System Separately Packed with Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사를 분리 충진시킨 파일럿 여과시스템에 의한 3가 비소 제거)

  • Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.878-883
    • /
    • 2006
  • Removal efficiency of As(III) was investigated with a pilot-scale filtration system packed with an equal amount(each 21.5 kg) of manganese-coated sand(MCS) in the bottom and iron-coated sand(ICS) in the top. Height and diameter of the used column was 200 cm and 15 cm, respectively. The As(III) solution was introduced into the bottom of the filtration system with a peristaltic pump at a speed of $5{\times}10^{-3}$ cm/s over 148 days. Breakthrough of total arsenic in the mid-sampling position(end of the MCS bed) and final-sampling position(end of the ICS bed) was started after 18 and 44 days, respectively, and then showed a complete breakthrough after 148 days. Although the breakthrough of total arsenic in the mid-sampling position was started after 18 days, the concentration of As(III) in this effluent was below 50 ppb up to 61 days. This result indicates that MCS has a sufficient oxidizing capacity to As(III) and can oxidize 92 mg of As(III) with 1 kg of MCS up to 61 days. When a complete breakthrough of total arsenic occurred, the removed total arsenic by MCS was calculated as 79.0 mg with 1 kg MCS. As variation of head loss is small at each sampling position over the entire reaction time, it was possible to operate the filtration system with ICS and MCS for a long time without a significant head loss.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.

Removal Characteristic of Arsenic by Sand Media Coated with both Iron-oxide and Manganese-oxide (산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구)

  • Kim, Byeong-Kwon;Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.473-482
    • /
    • 2009
  • In this study, iron and manganese coated sand (IMCS) was prepared by mixing Joomoonjin sand with solutions having different molar ratio of manganese ($Mn^{2+}$) and iron ($Fe^{3+}$). Mineral type of IMCS was analyzed by X-ray diffraction spectroscopy. Removal efficiency of arsenic through As(III) oxidation and As(V) adsorption by IMCS having different ratio of Mn/Fe was evaluated. The coated amount of total Mn and Fe on all IMCS samples was less than that on sand coated with iron-oxide alone (ICS) or manganese-oxide alone (MCS). The mineral type of the manganese oxide on MCS and iron oxides on ICS were identified as ${\gamma}-MnO_2$ and mixture of goethite and magnetite, respectively. The same mineral type was appeared on IMCS. Removed amount As(V) by IMCS was greatly affected by the content of Fe rather than by the content of Mn. Adsorption of As(V) by IMCS was little affected by the presence of monovalent and divalent electrolytes. However a greatly reduced As(V) adsorption as observed in the presence of trivalent electrolyte such as $PO_4\;^{3-}$. As(III) oxidation efficiency by MCS in the presence of NaCl or $NaNO_3$ was two times greater than that in the presence of $PO_4\;^{3-}$. Meanwhile a greater As(III) oxidation efficiency was observed by IMCS in the presence of $PO_4\;^{3-}$. This was explained by the competitive adsorption between phosphate and arsenate on the surface of IMCS.

In Situ Iron-manganese Removal by an Oxygenated Water Injection-and-extraction Technique in a Riverbank Filtration System (산소수 주입-양수 기법을 통한 강변여과수 내 철/망간 저감 평가)

  • Yi, Myeong-Jae;Cha, Jang-Hwan;Jang, Ho-June;Ahn, Hyun-suk;Hahn, Chan;Kim, Yongsung
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.339-347
    • /
    • 2015
  • Riverbank filtration has been suggested as a cost-effective method for improving water quality. However, high concentrations of Fe2+ and Mn2+ cause problems for the use of water and the maintenance of facilities. We evaluated the effectiveness and efficiency of an Fe2+ and Mn2+ removal technique based on the in situ injection of highly oxygenated water at a site on the Anseong River, between Anseong City and Pyeongtaek City, Gyeonggi Province. The removal process consists of three steps: injection, resting, and extraction. Results show that the removal efficiency increases with repeated application of the process. The amount of Fe-reduced drinking water satisfying water regulations (limit, 0.3 mg/L Fe) obtained using oxygenated water injection was five times higher than the amount of injected oxygenated water. Levels of Mn2+ were also reduced following the injection of oxygenated water.

Comparison of the As(III) Oxidation Efficiency of the Manganese-coated Sand Prepared With Different Methods (망간코팅사 종류별 독성 3가 비소의 산화특성에 관한 비교 연구)

  • Kim, Byeong-Kwon;Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2008
  • In this study physicochemical characteristics and stability of various manganese coated sands (MCS) prepared with different methods were evaluated. In addition, removal efficiencies of As(III) by each MCS were compared. Four different MCSs were used; B-MCS prepared by baking method, W&D-MCS prepared by wetting and dry method, NMCS prepared during the water treatment process and Birm which is a commercial MCS widely used for the removal iron and manganese. The manganese content in each MCS was following order: Birm (63,120 mg/kg) > N-MCS (10,400 mg/kg) >W&D-MCS (5,080 mg/kg) > B-MCS (2,220 mg/kg). Birm showed the least solubility (% basis) in acidic conditions. As(III) oxidation efficiency of B-MCS was continuously increased as the solution pH decreased. While As(III) oxidation efficiency of N-MCS and Birm was minimum around neutral pH. The increased As(III) oxidation efficiency above neutral pH for N-MCS and Birm could be due to the competitive adsorption of $Mn^{2+}$, which was produced from reduction of $MnO_2$, onto the surface of aluminum and manganese oxides.

Simultaneous dry-sorption of heavy metals by porous adsorbents during sludge composting

  • Ozdemir, Saim;Turp, Sinan Mehmet;Oz, Nurtac
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.258-265
    • /
    • 2020
  • Heavy metal removal by using porous mineral adsorbents bears a great potential to decontaminate sludge compost, and natural zeolite (NZ), artificial zeolite (AZ), and expanded perlite (EP) seem to be possible candidates for this purpose. A composting experiment was conducted to compare the efficiency of those adsorbents for removal of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb) from sewage sludge compost with no adsorbent amendment. For this purpose, 10 g of NZ and AZ and 5 g of EP was filled in a small bag made from non-biodegradable synthetic textile and was separately mixed in composting piles. The bags were separated from compost samples at the end of the experiment. AZ and NZ exhibited different reduction potentials depending on the type of heavy metal. AZ significantly reduced Cr (43.7%), Mn (35.8%), and Fe (29.9%), while NZ more efficiently reduced Cu (24.5%), Ni (22.2%), Zn (22.1%), and Pb (21.2%). The removal efficiency of EP was smaller than both AZ and NZ. The results of this simultaneous composting and metal removing study suggest that AZ and NZ can efficiently bind metal during composting process.

Optimal Conditions for As(III) Removal by Filtration System Packed with Different Ratio of Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사 충전비를 달리한 여과시스템에서 3가 비소 제거의 최적 조건)

  • Chang, Yoon-Young;Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1186-1191
    • /
    • 2006
  • Removal efficiency of As(III) through oxidation and adsorption in column reactors was investigated at different ratios of manganese-coated sand(MCS) and iron-coated sand(ICS) : MCS-alone, ICS-alone and both of ICS and MCS. The breakthrough of arsenic immediately occurred from a column reactor with MCS-alone. However, most of the arsenic present in the effluent was identified as As(V) due to the oxidation of As(III) by MCS. While five-times delayed breakthrough of arsenic was observed from a column reactor with ICS-alone. At a complete breakthrough of arsenic, the removed As(III) was 36.1 mg with 1 kg ICS. To find an optimum ratio of ICS and MCS in the column packed with both ICS and MCS, the removal efficiency of As(III) was investigated at three different ratios of ICS/MCS with a fixed amount of ICS. The breakthrough time of arsenic was quite similar in the different ratios ICS/MCS. However, much slower breakthrough of arsenic was observed as the ratio of ICS/MCS decreased. As the ratio of ICS/MCS decreased the concentration of As(III) in the effluent decreased and then showed below 50 ppb at an equal amount of ICS and MCS, suggesting more efficient oxidation of As(III) by greater amount of MCS. When a complete breakthrough of arsenic occurred, the removed total arsenic with an equal amount of ICS and MCS was 68.5 mg with 1 kg of filter material.

Removal of Soluble Fe(II) using Reactive Media Coated with both Fe and Mn (철과 망간이 동시에 코팅된 반응성 매질을 이용한 용존 Fe(II) 제거)

  • Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.85-92
    • /
    • 2011
  • Evaluation of the removal efficiencies of Fe(II) by reactive sand media coated with manganese (MCS), iron (ICS) and both of iron and manganese (IMCS) was investigated as functions of solution pH ranging from 2 to 9, reaction time and concentration of Fe(II) in a batch reactor using each reactive medium and additional oxidants such as $KMnO_4$ and NaOCl. When only Fe(II) was present in solution without any reactive medium, removal of Fe(II) was quite low below pH 5 due to a slow oxidation of Fe(II) and/or negligible precipitation but greatly increased above pH 5 due to a rapid oxidation of Fe(II) and subsequent precipitation of oxidized Fe species. ICS showed negligible efficiency on the removal of Fe(II) through adsorption. However, an efficient removal of Fe(II) was observed at low solution pH in the presence of IMCS or MCS through rapid oxidation and subsequent precipitation. Removal efficiency of Fe(II) by IMCS in the presence or absence of NaOCl was quite similar. Removal rate of Fe(II) by IMCS and additional oxidants gradually increased as the solution pH increased. From the kinetic experiments, removal pattern of Fe(II) was better described by pseudo-second-order equation than pseudo-first-order equation. A rapid removal of Fe(II) using IMCS in the presence of $KMnO_4$ was observed in the first 10 min. The initial removal rate of Fe(II) using $KMnO_4$ was 14,286 mg/kg hr. In case of using NaOCl, the removal of Fe(II) occurred rapidly in the first 6 hrs and then reached the near-equilibrium state. Removal of Fe(II) on IMCS was well expressed by Langmuir isotherm and the maximum removal capacity of Fe(II) was calculated as 1,088 mg/kg.