산소수 주입-양수 기법을 통한 강변여과수 내 철/망간 저감 평가

이명재^{1,2*}· 차장환¹· 장호준¹· 안현석¹· 한 찬¹· 김용성¹ ¹(주)지오그린21, ²강원대학교 지질학과

In Situ Iron-manganese Removal by an Oxygenated Water Injection-and-extraction Technique in a Riverbank Filtration System

Myeong-Jae Yi^{1,2*}, Jang-Hwan Cha¹, Ho-June Jang¹, Hyun-suk Ahn¹, Chan Hahn¹, and Yongsung Kim¹

¹GeoGreen21, Seoul 08376, Korea ²Department of Geology, Kangwon National University, Chuncheon 24341, Korea

Received 8 June 2015; received in revised form 21 August 2015; accepted 25 August 2015

최근 수자원확보 방안으로 강변여과수를 활용하는 방식이 적용되고 있으나 취수원의 철/망간 함량이 높아 다양한 문 제가 야기되고 있다. 이에 경기도 평택시와 안성시에 위치한 안성천 강변여과수 개발 Test Bed에서 주입 산소수의 산소 농도와 주입량을 변화시키면서 철/망간 지중제거의 효과 및 효율을 평가하였다. 철/망간의 제거시험은 3단계로 이루어지 며 주입단계, 정지단계, 양수단계를 반복적으로 수행하였다. 현장시험 결과 Fe²⁺ 농도는 양수기간 동안 0.3 mg/L 이하를 유지하였으며 망간은 0.8 mg/L 이하로 농도가 저감되었다. 또한, 주입·양수시험을 반복할수록 철의 농도는 먹는물 수질 기준(0.3 mg/L 이하)을 만족하는 양수량이 증가하였으며, 산소수 주입량의 최대 5배 이상 양수가 가능하였다. 망간의 경 우 철과 동일한 기준까지 감소되지는 않았으나, 양수에 따라 농도가 저감되는 경향성을 보였다.

주요어: 산소수, 철/망간 저감 평가, 강변여과수, 주입-양수 기법

Riverbank filtration has been suggested as a cost-effective method for improving water quality. However, high concentrations of Fe^{2+} and Mn^{2+} cause problems for the use of water and the maintenance of facilities. We evaluated the effectiveness and efficiency of an Fe^{2+} and Mn^{2+} removal technique based on the in situ injection of highly oxygenated water at a site on the Anseong River, between Anseong City and Pyeongtaek City, Gyeonggi Province. The removal process consists of three steps: injection, resting, and extraction. Results show that the removal efficiency increases with repeated application of the process. The amount of Fe-reduced drinking water satisfying water regulations (limit, 0.3 mg/L Fe) obtained using oxygenated water injection was five times higher than the amount of injected oxygenated water. Levels of Mn^{2+} were also reduced following the injection of oxygenated water.

Key words: oxygenated water, iron-manganese removal, riverbank filtration, injection-and-extraction technique

^{*}Corresponding author: tankguy@geogreen21.com

^{© 2015,} The Korean Society of Engineering Geology

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

서 론

강변여과수는 안정적인 수량 확보, 지표수 수질 사고 시 완충작용. 대체 취수원 확보 등 비상급수원으로 높은 활용성에 초점을 맞춰 기술개발이 이루어지고 있다. 특 히, 국내의 경우 지표수의 수질 변화와 비교해 지하수의 수질이 양호하고, 일정하게 유지되는 점이 장점으로 작 용하였다. 지표수 수질은 기상, 하천의 유량, 인위적인 오염 등 외부적인 영향을 받아 변화폭이 크다. 강변여과 수의 경우 이러한 수질변화가 크지 않으나 고농도의 철, 망간으로 인해 의해 상수원으로 직접 사용하기 위해서 는 추가적인 정수처리 과정이 필요하며(Lee et al., 2012), 정수처리를 위한 정수처리시설의 설치와 운영에 따른 추가 비용이 발생한다. 또한, 고농도의 철과 망간 은 지하수 수질 문제 뿐만 아니라 관정 스크린 및 펌프 에 침전되어 문제가 될 수 있으며, 이상한 맛과 냄새의 발생과 색도를 유발하여 심미적인 문제를 야기한다(Choi et al., 2007; Kim et al., 2009).

이러한 강변여과수 내 철과 망간을 제거하는 기술 중 관정 주변을 산화환경으로 조성하여 용존 철 및 망간을 대수층에서 미리 침전시켜 철/망간을 저감된 강변여과수 를 양수할 수 있게 하는 철/망간 지중제거 기술은 양호 한 수질의 용수공급이 가능하게 하며, 철/망간 제거를 위한 비용을 절감시킬 뿐만 아니라 관정 효율 및 펌프 성능 유지 등 철/망간 침전물로 인한 문제를 최소화 할 수 있다.

유럽에서는 1960년대 이후 철/망간 처리와 관련하여 활발하게 연구가 진행 되었으며, 현장에 시험정을 설치 한 후 산소를 주입하여 철/망간을 처리하는 방식에 대 한 현장시험 및 모델링은 Hallberg and Martinell (1976), Appelo et al. (1999), Mettler et al. (2001), Houben (2004) 및 Karakish (2005) 등의 많은 연구자 들에 의해 수행되었다. 국내의 경우 강변여과수의 수량 에 대한 연구는 상대적으로 많이 진행되고 있는 것에 비하여, 철/망간 지중저감 기술에 대한 연구는 비교적 최근에서야 진행되고 있다(Lee et al., 2012; Kim and Lee, 2013).

본 연구에서는 취수시설 주변 대수층에 산소수를 주 입함으로써 강변여과수 내에 고농도로 존재하는 철/망간 이온이 지중에서 저감되는 효과를 현장규모에서 실현하 였으며, 주입한 산소수의 산소 농도, 주입량 등에 따른 철/망간 저감효율을 평가하였다.

이론적 배경

지하수 내 철 이온 변화의 정량적 척도는 산화환원전 위(Redox potential)에 의해 결정된다. 자연상태에 존재 하는 철은 Fe²⁺와 Fe³⁺로 존재하며, 이 두 가지 상태는 전자의 교환에 따라 서로 변환이 가능하다. 자연상태에 서 Fe²⁺는 보통 용존상태로 존재하며 Fe³⁺는 불용성으로 쉽게 침전되어 철산화물 형태로 존재한다. 물속에 용존 상태로 존재하던 Fe²⁺이 전자를 하나 내놓으면서 Fe³⁺가 되어 수산화이온과 결합, 침전하여 수산화물을 만든다. 이와 같이 물 속에서 철과 물은 식 (1)과 같이 반응이 일어나며 산화환원전위와 수소이온농도의 변화는 철의 화학반응에 중요한 변수로 작용하는 것을 알 수 있다.

 $\operatorname{Fe}^{2^{+}} + 3\operatorname{H}_{2}O \Leftrightarrow \operatorname{Fe}(OH)_{3} + 3\operatorname{H}^{+} - e^{-}$ (1)

자연상태에 존재하는 망간은 Mn²⁺와 Mn⁴⁺의 두 가지 상태로 존재하며 지하수 내에서 화학적인 반응은 철과 유사하다(Silveira, 1988). 식 (2)는 전자의 교환에 의해 상태의 변화를 나타낸 것이다.

$$Mn^{2+} + 2H_2O \Leftrightarrow MnO_2 + 4H^+ + 2e^-$$
(2)

철/망간을 제거하는 화학적인 방법은 관정 주변을 산 화상태로 만들어 철과 망간을 산화물로 침전시킨 후 관 정으로부터 지하수를 양수하여 침전된 철과 망간을 제 거하는 것이다(Hallberg and Martinell, 1976).

철·망간 지중처리에 의한 관정 내 철의 변화 과정을 모식도로 나타내면 Fig. 1과 같다(Teutsch et al., 2005). Fig. 1a는 처리 전 자연상태일 때 관정 주변 대수층 내 에 철이 2가의 용존 상태로 존재하고 있는 것이며, Fig. 1b는 관정 내 산소의 공급으로 산소 공급 구역 내 용존 상태로 존재하고 있던 철이 Fe³⁺로 산화되면서 불용성 으로 쉽게 침전되는 성질을 갖고 있는 침철석(HFeO₂)이 나 Lepidocrocite (FeO(OH)) 등의 수산화물로 존재하는 상태를 나타낸다. Fig. 1c는 양수에 의해 산소 공급으로 생성된 수산화물이 제거되면서 반응구역 주변으로 존재 하고 있던 용존 철(Fe²⁺)이 다시 공급되고 일부 남아있 던 수산화물과 반응하는 과정을 나타낸 것이다.

철/망간 지중 제거방법을 적용함에 있어 산소수 주입 방식, 주입량 대비 양수량 및 주입수의 화학적 상태 등 을 고려해야 한다(Fan, 1988). 특히, 산소수의 주입방식 은 동일 관정에서 산소수를 주입하고 양수하는 방식과 양수정 주변에 위치한 다수의 주입정을 통해 산소수를 주입하고 양수정에서 양수하는 방식, 그리고 양수정과

Fig. 1. Iron characteristics during injection-extraction cycles (Teutsch et al., 2005).

(a) Location

Fig. 2. Location and geologic map of the study area.

다수의 주입정을 통해 산소수를 주입하는 혼합 주입방 식으로 구분할 수 있다. 본 연구에서는 동일 관정에서 양수와 주입을 교대로 하는 방식으로 현장시험을 실시 하였다.

철/망간 지중 제거방법에 있어 제거효율(Efficiency ratio)은 식 (3)와 같이 산소수 주입량 대비 양수량으로 표현된다.

Efficiency ratio =
$$\frac{Q_{ex}}{Q_{in}}$$
 (3)

여기서, Q_{in}은 주입된 산소수의 총 주입된 양이며 Q_{ex}은 양수된 물의 철 농도가 목표한 수질 기준 이하일 때까 지 총 양수된 양을 의미한다. 본 연구에서는 철의 농도 를 먹는물 수질기준인 0.3 mg/L까지 양수된 양으로 평 가하였다.

연구지역

연구지역은 행정구역상 경기도 평택시 유천동과 안성 시 공도읍 중복리 경계지점의 안성천 둔치에 위치하고 (b) Geologic map

있고, 남쪽으로는 충청남도 천안시 서북구 성환읍 신가 리와 인접하여 있다(Fig. 2). 지질은 하부로부터 선캠브 리아기 경기편마암복합체에 해당하는 평택편마암, 중생 대 쥬라기 흑운모화강암이 분포하며 제4기 충적층으로 구성되어 있다(Kim et al., 1980). 지형은 평야지대가 발달해 있으며 수계는 소지류들이 안성천으로 유입하여 서해로 흘러간다.

지층은 상부로부터 0~4m 심도는 실트질 점토층이며, 4~6m 심도는 중립질 모래층으로 2m 내외의 두께로 분포한다. 심도 6~14m는 자갈 섞인 모래층으로 두께는 8m 내외이며 그 하부는 풍화암으로 구성되어 있다.

현장시험 결과 수리전도도는 3.36×10⁻³~9.95×10⁻³ cm/sec 범위로 나타났다. 지표수, 지하수의 배경수질은 Table 1과 같으며 지하수의 수소이온농도(pH)는 5.9~7.0 이며 산화환원전위(ORP)와 용존산소(DO)는 각각 -115~ 40 mV, 1.0~1.9 mg/L의 범위를 보인다. 지하수의 수온과 전기전도도(EC)는 각각 12.9~17.3℃와 201~550 µS/cm 의 값을 갖는다. 또한, 지하수의 Fe²⁺와 Mn²⁺ 농도는 각각 6.1~10.6, 0.3~2.6 mg/L의 값을 보인다. 하천수의 경우 pH와 ORP는 각각 8.2, 235 mV이며 DO, 수온

구분	pН	ORP (mV)	DO (mg/L)	Temperature (°C)	EC (µS/cm)	Fe ²⁺ (mg/L)	Mn ²⁺ (mg/L)
Groundwater	5.9~7.0	-115~40	1.0~1.9	12.9~17.3	201~550	6.1~10.6	0.3~2.6
Anseong river	8.2	235	10.9	22.5	285	0.3	0.2

 Table 1. Background quality of groundwater and surface water.

Fig. 3. Location of pumping and monitoring wells.

및 EC는 각각 10.9 mg/L, 22.5℃ 및 285 µS/cm의 값 을 갖는다. 또한, 하천수의 Fe²⁺와 Mn²⁺ 농도는 각각 0.3, 0.2 mg/L으로 지하수와 차이를 보였다.

연구방법

현장 철/망간 저감평가를 위한 시험정은 양수정과 관 측정으로 구성하였으며, 양수정에 산소수를 주입하고 다 시 양수하는 방식으로 수행하였다. 양수정(VPW)은 안 성천에서 제방쪽으로 35 m 이격된 거리에 설치하였으며 관측정(VIW-1~4, OB-2~12)은 양수정으로부터 방사상으 로 5, 10, 15, 20 m 씩 이격하여 설치하였다(Fig. 3). 양수정은 외경 1,500 mm의 대구경으로 심도 14 m까지 굴착하였으며, 내경 300 mm의 우물자재를 설치하였다. 유공관은 주 대수층 구간인 자갈 섞인 모래층에 설치하 였으며 스크린 슬롯(slot) 크기와 개공률은 각각 1.0 mm, 25%로 제작하여 설치하였다. 또한, 여재는 2~5 mm의 주문진 표준사를 이용하여 충전하였다.

산소수 주입시험은 DO 농도가 낮은 강변여과수를 산 소발생 및 혼합장치를 이용하여 DO 농도가 높은 산소 수로 만든 후에 주입정으로 사용하는 양수정을 통해 대 수층 내로 재주입하는 방식으로, 주입단계(Injection step), 정지단계(Rest step) 및 양수단계(Extraction step) 을 하나의 회차(cycle)로 구성하여 반복 수행하였다. 양 수정을 통하여 대수층 내로 주입하는 산소수는 양수정 에서 약 300 m 하류에 양수정과 동일한 대수층에 설치 한 관정에서 양수한 물을 사용하였다. 주입한 산소수의 Fe²⁺와 Mn²⁺ 농도는 각각 1.5 mg/L, 1.8~2.5 mg/L mg/ L이다. 산소수 주입에 의한 철/망간 저감효과 및 저감효 율을 관측하기 위하여 일정한 간격으로 양수정 및 관측 정에서 수질을 측정하였다. pH, ORP, EC, 수온 및 DO 는 휴대용 측정기(D-54, D-55, Horiba사)를 이용하였고, Fe²⁺와 Mn²⁺는 Portable Spectrophotometer (DR2800, Hach사)를 사용하여 시료채취 즉시 현장에서 측정하였다. 현장시험은 2015년 5월 1일부터 6월 3일까지 약 792시간 동안 수행하였으며, 18시간 동안 주입하고(주입 단계), 6시간 동안 주입을 멈춘 뒤(정지단계), 양수하는 단계로 6회 반복하였다. 이 때 양수는 Fe²⁺ 농도가 0.5 mg/L를 초과할 때 종료하였으며, 종료 후 다시 주입을 시작하였다. Table 2는 산소수 주입시험에 대한 회차별 산소수 주입률 및 주입량, 양수률 및 산소수의 DO 농

도를 나타낸 것으로 산소수 주입량은 1~2, 3~4 및 5~6

단계에서 각각 150, 225, 375 m³이다.

Step	Injection rate (m ³ /day)	Injection volume (m ³)	Extraction rate (m ³ /day)	DO of injection water (mg/L)
1 st	200	150	500	30
2nd	200	150	500	30
3rd	300	225	500	30
4th	300	225	500	30
5th	500	375	500	23
6th	500	375	500	23

Table 2. Injection rate, injection volume, extraction rate, and dissolved oxygen concentration of injection water in each test.

Fig. 4. Distribution of dissolved oxygen concentration at each injection step. VPW, injection well; other wells are observation wells. Area A (solid line) shows the influence of pre-step injection and extraction.

연구 결과 및 고찰

산소수 주입 평가

산소수 주입시험에서 중요하게 관측해야 할 요소 중 의 하나는 주입한 산소수가 양수정을 통해 대수층으로 어떻게 퍼져나가는지 알아내는 것이며, 이에 따라 산화 영역(zone) 즉, 철 또는 망간이 산소와 반응할 수 있는 영역을 추정할 수 있다. Fig. 4는 회차별 산소수의 주입 에 의해 대수층에 분포하는 DO 농도를 도시한 것으로 주입 17시간 경과 후 측정값을 사용하였다. Fig. 4a는 2회차 주입시험 결과로 주입한 산소수의 DO 농도 및 주입량은 각각 30 mg/L, 150 m³이며, DO 농도가 5 mg/ L까지 증가한 영역은 양수정을 중심으로 약 5~7 m 범 위로 나타나고 있다. 실선의 A 영역은 반복 주입-양수 시험의 준비단계에서 주입되었던 산소수에 의한 영향으 로 판단된다. Fig. 4b는 4회차 주입시험 결과로 주입한 산소수의 DO 농도는 2회차 시험과 같고, 주입량을 225 m³으로 증가시켰다. 농도 5 mg/L를 기준으로 하는 DO 의 분포는 약 5~12 m로 나타났다. Fig. 4c는 6단계 주 입시험 결과로 주입한 산소수의 DO 농도 및 주입량은 각각 23 mg/L, 375 m³으로 조정하였으며, 농도 5 mg/L 의 DO 농도의 분포는 주입정으로부터 약 7~14 m까지 나타나고 있어 도달 거리는 증가하였으나 주입한 산소 수의 DO 농도가 낮아진 영향으로 전체적인 농도는 4차 시험보다 낮다. 살펴본 바와 같이 DO 농도 분포는 산 소수의 주입량이 증가함에 따라 넓게 퍼지는 경향성을 보이며, 산소수의 DO 농도보다 주입량에 의한 영향이 더 크게 작용하는 것을 알 수 있다.

철/망간 농도저감 결과

산소수 주입 후 철, 망간 농도는 시간에 따라 저감되

었으며 이후 양수가 지속됨에 따라 산화영역 바깥의 지 하수가 유입되면서 다시 높아지는 양상을 보인다. 또한 주입-양수가 반복됨에 따라 철의 먹는물 수질기준(0.3 mg/L)을 만족하는 수질의 지하수를 양수할 수 있는 시 간이 증가하였다.

Fig. 5는 반복해서 실시한 산소수 주입시험 결과로 시 간에 따른 DO, Fe²⁺ 및 Mn²⁺의 농도변화를 나타낸 것 이다. Fig. 5a는 양수정에서의 농도 변화를 나타낸 것으 로 0.3 mg/L 이하로 양수가 가능한 시간이 2회차에서는 26시간이었으나 6회차에서는 114시간으로 점차 증가하 였다. 특히, DO 농도는 양수 23시간 경과 후에 2.0 mg/L로 감소하여 유지되는 것을 볼 수 있으며, DO 농 도가 낮게 유지되는 동안에도 Fe²⁺의 농도가 0.3 mg/L 이하에서 서서히 증가하고 있다. 이는 주입단계에서 주 입된 산소수가 넓게 퍼져나가며 산화영역을 형성하고, 정지단계에서 산소와 철이 반응하여 Fe²⁺이 저감되다가, 양수단계에서는 주입된 산소가 소모된 후 흡착 기작에 의해 지속적으로 감소 상태가 유지되는 것으로 판단된 다. 양수가 진행됨에 따라 Mn²⁺ 농도는 상대적으로 Fe²⁺ 에 비하여 느리게 감소되는 경향을 보이며 주입과 양수 를 반복함에 따라 안정적으로 낮아지는 추세를 보이고 있다. 이는 주입된 산소와 철이 먼저 반응하고 이후에 망간이 산소와 반응하거나 철 수산화물에 망간이 흡착 되는 기작에 의해 제거되는 반응시간이 상대적으로 느 리게 나타나는 것으로 판단된다. Fig. 5b는 양수정에서 5 m 이격된 관측정 OB-2에서의 농도 변화를 나타낸 것 이다. Fe²⁺의 경우, 산소수 반복 주입에 따른 저감효과 는 4회차까지 변화폭이 큰 상태에서 서서하게 나타나며, 5회차부터 농도저감 효과가 크게 나타나며, 6회에서는 철의 먹는물 수질기준인 0.3 mg/L 이하의 농도를 양수 후 83시간까지 유지되었다. 망간은 주입한 산소수의 영

(b) Monitoring well(OB-2)

Fig. 5. Measured levels of dissolved oxygen, Fe²⁺, and Mn²⁺ during repeated cycles of injection, rest, and extraction.

향으로 1.4 mg/L에서 0.8 mg/L로 양수 후 71시간까지 유지되었다.

Fig. 6은 5회차 시험에서 주입단계, 정지단계, 양수단 계의 Fe²⁺ 농도 분포를 나타낸 것으로 주입한 산소수의 DO 농도와 주입량은 23.0 mg/L, 375 m³이며, 양수는 500 m³/day로 114시간 동안 실시하였다. Fig. 6a는 주입 단계로 양수정의 북동쪽에 위치한 VIW-1과 남서쪽에 위치한 OB-7에서 상대적으로 높은 Fe²⁺ 농도를 보이며, 양수정 부근에서 낮은 Fe²⁺ 농도 분포를 보인다. 이는 전차 시험의 영향과 주입한 산소수의 Fe²⁺ 농도가 상대 적으로 낮기 때문인 것으로 판단된다. Fig. 6에서 점선 은 Fe²⁺ 농도가 0.3 mg/L인 등고선을 나타낸 것이다. 여기서 A 영역(실선 타원)은 선행 시험에 의한 영향이 남아있는 것으로 판단된다. 또한, OB-8의 경우 Fe²⁺ 농 도는 단계별로 8.6 mg/L 이상의 높은 값을 유지하고 있 으며, 이는 산소수 주입을 어렵게 하는 저투수성 매질이 불규칙적으로 분포하기 때문인 것으로 판단된다. Fig. 6b는 정지단계로 주입정을 중심으로 북쪽과 동쪽에 낮 은 Fe²⁺ 농도 영역이 나타나는데, 산화반응에 의하여 Fe²⁺이 감소되고 있는 것을 나타낸다. 양수 1시간 경과 후 지속적으로 반응이 이루어지면서 Fe²⁺가 저감된 면 적이 더 넓어져, Fe²⁺ 농도가 0.3 mg/L 이하인 영역이 양수정에서 약 5~10 m까지 확대되었다(Fig. 6c). Fig. 4 에서 DO 농도가 높은 지역과 Fe²⁺가 저감된 지역이 대 체적으로 일치하는데, 이는 주입 후 정지함에 따라 철과 산소가 반응하여 침전이 활발하게 이루어지기 때문인 것 으로 판단된다. Fig. 6d와 6e는 각각 양수 후 15시간, 53시간 경과한 상태로 양수가 진행됨에 따라 다시 Fe²⁺

Fig. 6. Distribution of Fe^{2+} during the fifth cycle of injection, rest, and extraction. VPW, injection and extraction well; other wells are observation wells. The dotted line represents an Fe^{2+} concentration of 0.3 mg/L; area A (solid line) shows the influence of pre-step injection and extraction.

Fig. 7. Distribution of Mn^{2+} during the fifth cycle of injection, rest, and extraction. VPS, injection and extraction well; other wells are observation wells.

농도가 증가하고 있으나, 53시간 경과시 양수정에서는 Fe²⁺ 농도는 0.17 mg/L로 0.3 mg/L 보다는 낮게 나타났

다. Fig. 6f는 양수 이후 90시간 경과한 후의 Fe²⁺ 농 도 분포를 나타낸 것으로 산화영역이 줄어드는 것을 확

Fig. 8. Assessment of iron removal by the injection-andextraction technique.

인할 수 있으며 이 때 양수된 물의 Fe²⁺ 농도는 0.3 mg/L로 서서히 높아지고 있다.

Fig. 7은 산소수 반복 주입시험의 5회차에서의 주입, 정지, 양수에 따른 Mn²⁺ 농도 분포를 나타낸 것이다. 망간의 경우 철과 같이 각 단계별로 뚜렷하게 변화하는 경향성은 보이지 않으나, 정지단계에서 다소 높았던 Mn²⁺ 농도가 양수단계부터는 양수에 따라 낮아지는 저 감효과가 나타난다. Mn²⁺ 저감은 DO가 Fe²⁺와의 반응 이후 다시 배경농도까지 감소된 이후부터 서서히 이루 어지는 것으로 볼 때, Fe²⁺와 달리 Mn²⁺의 저감은 산화 반응보다는 흡착반응 등 다른 저감 기작의 영향으로 판 단된다.

철/망간 저감 효율평가

분석결과 산소수 주입이 반복됨에 따라 양수 가능량 이 증가하는 것으로 나타났다(Fig. 8). 각 회차별 주입량 은 1, 2회차, 3, 4회차 및 5, 6회차에서 각각 150, 225, 375 m³이며, 이때 양수된 물의 총량은 509~2,331 m³ 이고, 이중 철 농도가 0.3 mg/L 이하일 때의 총 양 수량은 372~1,886 m³이다. 이는 산소수 주입량이 많을 수록 제거효율이 좋아지는 것으로 볼 수 있다. 또한 이 러한 결과는 주입시험을 반복함으로써 나타나는 효과라 고도 볼 수 있는데, 이번 시험에서는 동일한 조건에서 같은 시험을 2회씩 반복하였기 때문에 엄밀한 구분은 어려우므로 향후 연속되는 연구를 통해서 보완이 필요 한 것으로 판단된다.

결론 및 토의

본 연구에서는 산소수 주입을 통한 철/망간 지중제거 기술을 산소수의 산소농도와 주입량을 변화시키면서 강 변여과수 연구 현장에 적용하였다. 산소수를 주입할 때 의 영향 범위는 주입량에 따라 넓어지지만 주입 산소 농도의 영향보다는 주입량에 영향을 더 받는 것으로 나 타났다. 철/망간의 지중제거는 주입, 정지, 양수의 세가 지 단계로 이루어진다. 주입단계는 산소수를 관정을 통 해 지중의 주대수층에 재주입하는 단계이며, 이 단계에 서는 주입한 산소수의 철/망간 농도로 인하여 일정 농 도 이하까지 제거가 되지 않았다. 정지단계는 이전 단계 에서 주입한 산소수에 의해 Fe²⁺과 Mn²⁺이 산화반응을 일으켜 저감이 나타나는 단계이다. 양수단계는 주입한 산소와 철/망간의 산화반응이 지속적으로 일어나 주입한 산소가 소모되며, 대수층 내 존재하는 산소가 감소했음 에도 불구하고 흡착작용 등에 의하여 Fe²⁺과 Mn²⁺의 농도가 지속적으로 감소되는 단계이다. 시험을 반복할수 록 제거효율은 증가하였으며, 철의 경우 먹는물 수질기 준인 0.3 mg/L 이하로 산소수 주입량의 최대 5배까지 양수가 가능하였다. 망간의 경우 먹는물 수질기준인 0.3 mg/L까지 감소되지는 않았으나, 양수에 따라 농도가 저 감되는 경향성을 보이고 있으며, 주변 관측정에서의 농 도가 지속적으로 감소된 상태를 유지하는 등 시험을 반 복하면서 개선될 수 있는 가능성을 보여주었다.

이러한 주입 산소수의 DO 농도, 주입량에 따른 영향 은 철/망간 지중제거기술 현장적용 시 반드시 고려해야 하는 중요한 인자이며, 각각의 효과는 현장시험을 통하 여 입증이 되었다. 강변여과수내 철/망간의 경우 먹는물 수질기준까지 저감이 되면 다른 수질에 문제가 없을 경 우 간단한 정수시설을 통하여 공급할 수 있는 장점이 있으며, 먹는물 수질기준까지 낮추지 못하더라도 기존 정수장의 철/망간 유입수 수질 기준을 만족할 수 있어 철/망간 전처리 시설이나 별도의 정수장을 건설할 필요 가 없으므로 경제적이다. 향후 대용량 취수가 가능한 방 사형집수정이나 다양한 지질조건에서 본 기술을 적용함 으로써 그간 강변여과수 개발의 걸림돌이었던 고농도의 철/망간을 경제적이고 효과적으로 제거할 수 있을 것으 로 기대한다.

사 사

본 연구는 국토교통부가 출연하고 국토교통과학기술

진흥원에서 위탁시행한 물관리연구사업(11기술혁신C05) 에 의한 '수변지하수활용고도화' 연구단의 연구비 지원 에 의해 수행되었습니다.

References

- Appelo, C. A. J., Drijver, B., Hekkenberg, R., and de Jonge, M., 1999, Modeling in situ iron removal from groundwater, Ground Water, 37(6), 811-817.
- Choi, B. K., Koh, D. C., Ha, K., and Cheon, S. H., 2007, Effect of redox processes and solubility equilibria on the behavior of dissolved iron and manganese in groundwater from a riverine alluvial aquifer, Economic and Environmental Geology, 40(1), 29-45 (in Korean with English abstract).
- Fan, M., 1988, The application of Vyredox method regarding iron removal from ground water in China, Ground Water, 26(5), 647-648.
- Hallberg, R. O. and Martinell, R., 1976, Vyredox in situ purification of ground water, Ground Water, 14(2), 88-93.
- Houben, G, 2004, Modeling the buildup of iron oxide encrustations in wells, Ground Water, 42(1), 78-82.
- Karakish, A., 2005, Subsurface removal of iron and manganese from groundwater - case study, Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt.
- Kim, D. H., Choi, W. C., and Chang, T. W., 1980, The geological map of the Pyeongtaeg sheet, Korea Research Institute of Geoscience and Mineral Resources, 31p.
- Kim, G. B. and Lee, M. J., 2013, Optimum design of oxygenized water injection wells for an in-situ removal of iron and manganese in groundwater, Journal of the Geological Society of Korea. 49(5), 579-586 (in Korean with English abstract).
- Kim, G B., Kim, B. W., Shin, S. H., and Park, J. H., 2009, Iron and manganese removal through well development at river bank filtration site, The Journal of Engineering Geology, 19(3), 385-396 (in Korean with English abstract).
- Lee, M. J., Park, J. H., and Kim, G. B., 2012, In situ ironmanganese removal by the oxygenized water injection at the river bank filtration site, Journal of the Geological Society of Korea. 48(6), 503-519 (in Korean with English abstract).
- Mettler, S., Abdelmoula, M., Hoehn, E., Schoenenberger, R., Weidler, P., and von Gunten, U., 2001, Charaterization of iron and manganese precipitates from an in situ groundwater treatment plant, Ground Water, 39(6), 921-930.
- Silveria, L., 1988, Groundwater, Voulme III "In situ" groundwater treatment, Encyclopedia of Life Support Systems (EOLSS). Available at; http://www.eolss.net/ Sample-Chapters/C07/E2-09-08-05.pdf.
- Teutsch, N., Gunten, U. V., Porcelli, D., Cirpka, O. A., and Halliday, A. N., 2005, Adsorption as a cause for iron isotope fractionation in reduced groundwater, Geochimica et Cosmochimica Acta, 69(17), 4175-4185.

이명재

(주)지오그린21 08376 서울 구로구 디지털로 33길 55 901호 Tel: 02-6330-2503 Fax: 02-6330-2557 강원대학교 지질학과 24341 강원도 춘천시 효자2동 강원대학길1 E-mail: tankguy@geogreen21.com

차장환

(주)지오그린21 08376 서울 구로구 디지털로 33길 55 901호 Tel: 02-6330-2546 Fax: 02-6330-2557 E-mail: jhcha9364@gmail.com

장호준

(주)지오그린21 08376 서울 구로구 디지털로 33길 55 901호 Tel: 02-6330-2549 Fax: 02-6330-2557 E-mail: hojune8787@naver.com

안현석

(주)지오그린21 08376 서울 구로구 디지털로 33길 55 901호 Tel: 02-6330-2548 Fax: 02-6330-2557 E-mail: ahncci84@naver.com

한 찬

(주)지오그린21 08376 서울 구로구 디지털로 33길 55 901호 Tel: 02-6330-2559 Fax: 02-6330-2557 E-mail: hahn.gg21@gmail.com

김용성

(주)지오그린21 08376 서울 구로구 디지털로 33길 55 901호 Tel: 02-6330-2540 Fax: 02-6330-2557 E-mail: yskim7474@gmail.com