• Title/Summary/Keyword: iron powder

Search Result 482, Processing Time 0.026 seconds

Pulsed Electric Current Sintering of Nano-crystalline Iron-base Powders

  • Li, Yuanyuan;Long, Yan;Li, Xiaoqiang;Liu, Yunzhong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.272-273
    • /
    • 2006
  • A new process of pulsed electric current sintering was developed. It combines compaction with activated sintering effectively and can manufacture bulky nano-crystalline materials very quickly. A nano-structured steel is obtained with high relative density and hardness by this process. The average grain size of iron matrix is 58nm and the carbide particulate size is less than 100 nm. The densification temperature of ball-milled powders is approximately $200^{\circ}C$ lower than that of blended powders. When the sintering temperature increases, the density of as-sintered specimen increases but the hardness of as-sintered specimen first increases and then decreases.

  • PDF

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Valve Seat Insert Material with Good Machinability

  • Kawata, Hideaki;Maki, Kunio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.403-404
    • /
    • 2006
  • Sintered materials have been applied widely in Valve Seat Inserts (VSI). The demands for VSIs are not only good heat and wear resistance but also good machinability. The sintered materials, which are made of a mixture of manganese containing iron powder and certain types of sulfide powder, have superior machinability due to precipitation of the fine MnS particles in the matrix. This report introduces a new VSI material, which has both superior machinability, and wear resistance due to applies of this "MnS precipitation" technique.

  • PDF

A Study on Magnetic Iron Oxide Nano Particles Synthesized by the Levitational Gas Condensation (LGC) Method (부양가스응축법에 의해 제조된 철산화물 나노 분말의 자기적 특성연구)

  • 엄영랑;김흥회;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2004
  • Nanoparticles of iron oxides have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by XRD, TEM and Mossbauer spectroscopy. Fe clusters were evaporated from a surface of the levitated liquid Fe droplet and then condensed into nanoparticles of iron oxide with particle size of 14 to 30 nm in a chamber filled with mixtures of Ar and $O_2$ gases. It was found that the phase transition from both $\gamma$-$Fe_2O_3$ and $\alpha$-Fe to $Fe_3O_4$, which was evaluated from the results of Mossbauer spectra, strongly depended on the $O_2$ flow rate. As a result, $\gamma$-$Fe_2O_3$ was synthesized under the $O_2$ flow rate of 0.1$\leq$$Vo_2$(Vmin)$\leq$0.15, whereas $Fe_3O_4$ was synthesized under the $O_2$, flow rate of 0.15$\leq$$Vo_2$(Vmin)$\leq$0.2.

Cyanide Degradation from Plating Wastewater Using Iron Oxide Nanocomposite Layer (산화철 나노구조박막 이용한 도금폐수내의 시안제거)

  • Jang, Jun-Won;Kim, Hye-Ran;Lim, Hyeong-Seok;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.292-297
    • /
    • 2014
  • We synthesized the self-organized nanoporous oxide with potentiostatic anodization of iron foil. The iron oxide nanocomposite (INCs) were fabricated in 1M $Na_2SO_4$ containing 0.5wt% NaF electrolyte holding the potential at 20, 40 and 60 V for 20min, respectively. Field Emmision Scanning Electron Microscopy (FESEM) and X-ray Diffractometer (XRD) were used to evaluate the micromorphology and crystalline structure of INC film. Also, this study was performed to evaluate the fenton reaction using INC film with hydroperoxide for degradation of cyanide dissolved in water. In case of INC-40V in the presence of $H_2O_2$ 3%, the first-order rate constant was found to be $1.7{\times}10^{-2}min^{-1}$, and indicated to be $1.2{\times}10^{-2}min^{-1}$ on commercial hematite powder. This result is shown to be good performance enough to replace the powder type for treatment of wastewater.

The Effect of Ball-Milling of Elemental Powders on Ni-Al Based Intermetallic Coatings using the Heat of Molten Cast Iron (주철의 용탕열을 이용한 Ni-Al계 금속간화합물의 연소합성 코팅에 미치는 Ball Milling의 영향)

  • Lee, Han-Young;Cho, Yong-Jae;Kim, Tae-Jun;Bang, Hee-Jang
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • Ball-milled Ni-Al powder compacts have been synthesized by the heat of molten cast iron and have been coated on cast iron. The effects of the ball-milling time on the microstructure of the intermetallic coatings have been investigated. The experimental results showed that the ball-milled Ni-Al powder compacts were completely reacted and were successfully coated on the cast iron without re-melting the substrate. Densification of the coating layers was enhanced by increasing the ball-milling time. This might be attributed to the fact that the heat released during the intermetallic reaction was dispersed over a prolonged reaction time by the ball-milling of the elemental powders.

Rolling Contact Fatigue Property of Sintered and Carburized Compacts Made of Molybdenum Hybrid-alloyed Steel Powder

  • Unami, Shigeru;Ozaki, Yukiko;Uenosono, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.144-145
    • /
    • 2006
  • A developed molybdenum hybrid-alloyed steel powder is based on a molybdenum prealloyed steel powder to which molybdenum powder particles are diffusion bonded. The sintered compact made of this powder has a finer pore structure than that of the conventional molybdenum prealloyed steel powder, because the ferritic iron phase $({\alpha}-phase)$ with a high diffusion coefficient is formed in the sintering necks where molybdenum is concentrated resulting in enhanced sintering. The rolling contact fatigue strength of the sintered and carburized compacts made of this powder improved by a factor of 3.6 compared with that of the conventional powder due to the fine pore structures.

  • PDF

Improvement of Color for Iron Oxide from Waste Pickling Acid (산화철 안료의 색상개선 연구)

  • 손진군;금대영;이재영;이훈하
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.24-29
    • /
    • 2002
  • In this study, to improve the color of iron oxide from waste pickling acid at the cold rolling mill, the quality control technologies especially about color were investigated on the spray roaster and iron oxide powder. At the operation condition of the spray roaster, the charge amount of waste acid per hour, temperature, numbers of spray nozzle were investigated. At admixing process, titanium oxide, silica, goethite were tested. Color character of iron oxide can be improved by process control at spray roaster and by admixing process at a pigment factory Iron oxide from results of this study is enough to use as the colorant of concrete product.

Synthesis of iron oxide powders by hydrothermal process

  • Bae, Dong-Sik;Park, Chul-Won;Gam, Jig-Sang;Han, Kyong-Sop
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.176-179
    • /
    • 2001
  • Iron oxide powders were prepared under high temperature (up to $175^{\circ}C$) and pressure conditions( up to 129 pasi) by precipitation from metal nitrates with aqueous potassium hydroxide. Various types of iron oxide powders were obtained at different conditions. The size and the shape of the particles can be controlled as afunction of starting solution pH. The average particles size of the synthesized iron oxide powders increased, the particle shapes of the powders became fibrous, and the crystalline phase of the powder changes from iron oxide to iron hydroxide with increasing solution pH. The effects of synthesis parameters are discussed.

  • PDF