DOI QR코드

DOI QR Code

Cyanide Degradation from Plating Wastewater Using Iron Oxide Nanocomposite Layer

산화철 나노구조박막 이용한 도금폐수내의 시안제거

  • Jang, Jun-Won (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Hye-Ran (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Lim, Hyeong-Seok (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Jae-Woo (Department of Civil and Environmental Engineering, Hanyang University)
  • 장준원 (한양대학교 건설환경공학과) ;
  • 김혜란 (한양대학교 건설환경공학과) ;
  • 임형석 (한양대학교 건설환경공학과) ;
  • 박재우 (한양대학교 건설환경공학과)
  • Received : 2014.03.10
  • Accepted : 2014.04.22
  • Published : 2014.05.30

Abstract

We synthesized the self-organized nanoporous oxide with potentiostatic anodization of iron foil. The iron oxide nanocomposite (INCs) were fabricated in 1M $Na_2SO_4$ containing 0.5wt% NaF electrolyte holding the potential at 20, 40 and 60 V for 20min, respectively. Field Emmision Scanning Electron Microscopy (FESEM) and X-ray Diffractometer (XRD) were used to evaluate the micromorphology and crystalline structure of INC film. Also, this study was performed to evaluate the fenton reaction using INC film with hydroperoxide for degradation of cyanide dissolved in water. In case of INC-40V in the presence of $H_2O_2$ 3%, the first-order rate constant was found to be $1.7{\times}10^{-2}min^{-1}$, and indicated to be $1.2{\times}10^{-2}min^{-1}$ on commercial hematite powder. This result is shown to be good performance enough to replace the powder type for treatment of wastewater.

Keywords

References

  1. Antony, H., Legrand, L., and Chauss, A. (2008). Carbonate and Sulphate Green Rusts-Mechanisms of Oxidation and Reduction, Electrochimica Acta, 53(24), pp. 7146-7156. https://doi.org/10.1016/j.electacta.2008.05.008
  2. Beattie, J. and Polyblank, G. A. (1995). Copper-catalysed Oxidation of Cyanide by Peroxide in Alkaline Aqueous Solution, Australian Journal of Chemistry, 48(4), pp. 861-868. https://doi.org/10.1071/CH9950861
  3. Chang, Y. Y., Choi, S. I., and Lee, C. H. (2000). Fenton-like Oxidation for the Treatment of Landfill Leachate, Journal of Korean Society on Water Environment, 16(3), pp. 13-420.
  4. Chang, Y. Y., Chung, D. C., Chung, M. J., and Choi, S. I. (1999). A Characteristics Study for Fenton-like Oxidation in $Fe{\circ}/H_2O_2$ System, Journal of Korean Society on Water Environment, 15(4), pp. 591-599.
  5. Choi, W. S. and Park, G. H. (1997). Cyanide Removal of Sodium Cyanide and Cyanide Containing Plating Wastewater with Hydrogen Peroxide, Journal of Korea Society of Environmental Administration, 3(1), pp. 35-48.
  6. Dash, R. R., Gaur, A., and Balomajumder, C. (2009). Cyanide in Industrial Wastewaters and Its Removal: A Review on Biotreatment, Journal of Hazardous Materials, 163(1), pp. 1-11. https://doi.org/10.1016/j.jhazmat.2008.06.051
  7. Fernandez, J., Nadtochenko, V., Enea, O., Bozzi, A., Yuranova, T., and Kiwi, J. (2003). Testing and Performance of Immobilized Fenton Photoreactions via Membranes, Mats and Modified Copolymers, International Journal of Photoenergy, 5(2), pp. 107-114. https://doi.org/10.1155/S1110662X03000217
  8. Ghicov, A., Tsuchiya, H., Macak, J. M., and Schmuki, P. (2005). Titanium Oxide Nanotubes Prepared in Phosphate Eletroytes, Electrochemisty Communication, 7, pp. 505-509. https://doi.org/10.1016/j.elecom.2005.03.007
  9. Gurol, M. D. and Holden, T. E. (1988). The Effect of Copper and Iron Complexation on Removal of Cyanide by Ozone, Industrial & Engineering Chemistry Research, 27(7), pp. 1157-1162. https://doi.org/10.1021/ie00079a012
  10. Haag, W. R. and Yao, C. C. D. (1992). Rate Constants for Reaction of Hydroxyl Radicals with Several Drinking Water Contaminants, Environmental Science & Technology, 26(5), pp. 1005-1013. https://doi.org/10.1021/es00029a021
  11. Haber, F. and Weiss, J. (1934). The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 147(861), pp. 332-351.
  12. Kim, D. H. and Lee, K. H. (1998). Treatment of Organic Acid Cleaning Reagent Using Fenton Oxidation, Journal of Korean Society on Water Environment, 14(1), pp. 13-19.
  13. Kim, S. I., Roh, S. H., and Nah, J. W. (2000). Plating Wastewater Treatment by Hybrid Process of Fenton's Oxidation and Membrane Separation, Applied Chemistry for Engineering, 11(4), pp. 360-365.
  14. Kitajima, N., Fukuzumi, S., and Ono, Y. (1978). Formation of Superoxide Ion During the Decomposition of Hydrogen Peroxide on Supported Metal Oxides, The Journal of Physical Chemistry, 82(13), pp. 1505-1510. https://doi.org/10.1021/j100502a009
  15. Kong, S. H., Watts, R. J., and Choi, J. H. (1998). Treatment of Petroleum-Contaminated Soils Using Iron Mineral Catalyzed Hydrogen Peroxide, Chemosphere, 37(8), pp. 1473-1482. https://doi.org/10.1016/S0045-6535(98)00137-4
  16. Lim, H. G., Namkung K. C., and Yoon, J. Y. (2005). Theoretical Understanding of Fenton Chemistry, Applied Chemistry for Engineering, 16(1), pp. 9-14.
  17. Ministry of Environment (2008). Standard Methods for the Examination of Water and Wastewater Quality Control, Ministry of Environment, pp. 196-198.
  18. Moon, J. W., Moon, H. S., Song, Y. G., Kang, J. K., and Roh, Y. (2003). Investigation of Corrosion Minerals from the Remediation for TCE-Contaminated Groundwater, The Mineralogical Society of Korea, 16(1), pp. 107-123.
  19. Mudliar, R., Umare, S. S., Ramteke, D. S., and Wate, S. R. (2009). Energy Efficient-Advanced Oxidation Process for Treatment of Cyanide Containing Automobile Industry Wastewater, Journal of Hazardous Materials, 164(2-3), pp. 1474-1479. https://doi.org/10.1016/j.jhazmat.2008.09.118
  20. Pedraza-Avella, J. A., Acevedo-Pena, P., and Pedraza-Rosas, J. E. (2008). Photocatalytic Oxidation of Cyanide on $TiO_2$: An Electrochemical Approach, Catalysis Today, 133-135, pp. 611-618. https://doi.org/10.1016/j.cattod.2007.12.063
  21. Sarla, M., Pandit, M., Tyagi, D. K., and Kapoor, J. C. (2004). Oxidation of Cyanide in Aqueous Solution by Chemical and Photochemical Process, Journal of Hazardous Materials, 116 (1-2), pp. 49-56. https://doi.org/10.1016/j.jhazmat.2004.06.035
  22. Tratnyek, P. G. and Johnson, R. L. (2006). Nanotechnologies for Environmental Cleanup, Nano Today, 1(2), pp. 44-48.
  23. Watts, R. J., Bottenberg, B. C., Hess, T. F., Jensen, M. D., and Teel, A. L. (1999). Role of Reductants in the Enhanced Desorption and Transformation of Chloroaliphatic Compounds by Modified Fenton's Reactions, Environmental Science & Technology, 33(19), pp. 3432-3437. https://doi.org/10.1021/es990054c
  24. Watts, R. J. and Dilly, S. E. (1996). Evaluation of Iron Catalysts for the Fenton-like Remediation of Diesel-contaminated Soils, Journal of Hazardous Materials, 51(1-3), pp. 209-224. https://doi.org/10.1016/S0304-3894(96)01827-4
  25. Yngard, R. A., Sharma, V. K., Filip, J., and Zboril, R. (2008). Ferrate(VI) Oxidation of Weak-Acid Dissociable Cyanides, Environmental Science & Technology, 42(8), pp. 3005-3010. https://doi.org/10.1021/es0720816
  26. Zagury, G. J., Oudjehani, K., and Deschenes, L. (2004). Characterization and Variability of Cyanide in Solid Mine Tailing from Gold Extraction Plants, The Science of the Total Environment, 320, pp. 211-224. https://doi.org/10.1016/j.scitotenv.2003.08.012
  27. Zeevalkink, J. A., Visser, D. C., Arnoldy, P., and Boelhouwer, C. (1980). Mechanism and Kinetics of Cyanide Ozonation in Water, Water Research, 14(10), pp. 1375-1385. https://doi.org/10.1016/0043-1354(80)90001-9