• 제목/요약/키워드: iron kinetics

검색결과 102건 처리시간 0.028초

Redox Kinetics of Chromium(Ⅵ) in the Presence of Aquifer Materials Amended with Ferrous Iron

  • Hwang, Inseong;Batchelor, Bill
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.118-121
    • /
    • 2002
  • The kinetics and stoichiometry of the reduction of hexavalent chromium (Cr(Ⅵ)) with ferrous iron (Fe(II)) were examined in systems with and without aquifer solids. Cr(Ⅵ) reduction was rapid in the absence of solids, but demonstrated slower and more complex kinetics in the presence of aquifer solids. The aquifer solids removed Fe(II) from solution and a portion of the reducing capacity of Fe(II) was transferred to the aquifer solids. The solid phases were then able to continue to remove Cr(Ⅵ). This suggests in-situ treatment of Cr(Ⅵ) by Fe(II) injection would be feasible in the aquifer environment. In general, re-oxidation of reduced chromium by molecular oxygen was not observed in our systems over time periods of nearly one year.

  • PDF

Innovative Remediation of Arsenic in Groundwater by Nano Scale Zero-Valent Iron

  • Kanel, Sushil-Raj;Kim, Ju-Yong;Park, Heechul
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.87-90
    • /
    • 2003
  • This research examines the feasibility of using laboratory-synthesized nano scale zero-valent iron particles to remove arsenic from aqueous phase. Batch experiments were performed to determine arsenic sorption rates as a function of the nano scale zero-valent iron solution concentration. Rapid adsorption of arsenic was achieved with the nano scale zero-valent iron. Typically 1 mg $L^{-1}$ arsenic (III) was adsorbed by 5 g $L^{-1}$ nano scale zero-valent iron below the 0.01 g $L^{-1}$ concentration within 7min. The kinetics of the arsenic sorption followed pseudo-first-order reaction kinetics. Observed reaction rate constants ( $K_{obs}$) varied between 11.4 to 129.0 $h^{-1}$ with respect to different concentrations of nano scale zero-valent iron. A variety of analytical techniques were used to study the reaction products including HGAAS (hydride generator atomic adsorption spectrophotometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy). Our experimental results suggest novel method for efficient removal of arsenic Iron groundwater.r.

  • PDF

Comparison of explosive compounds (HMX, RDX, and TNT) reduction by micro and nano zero valent iron

  • 배범한
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.123-126
    • /
    • 2006
  • Reduction kinetics and intermediates behaviour of three high explosives (HMX, RDX, and TNT) were studies in batch reactors using either nano or micro size zero valent iron(ZVI) as reducing agent. The kinetics constants normalize to the mass of iron($k_M$) or to the surface area ($k_{SA}$) were measured and compared along with the changes of intermediate concentrations of each explosive. Results showed that $k_M$ and $k_{SA}$ values neither correlated each other nor explained the behaviour of intermediates of each high explosive in the batch reactor, in which initial intermediates decreased rapidly with nano ZVI treatment whereas the intermediates accumulated and stayed longer in the micro ZVI treated reactor.

  • PDF

Zerovalent Iron에 의한 Metolachlor의 분해 Kinetics (Kinetics of Metolachlor Degradation by Zerovalent Iron)

  • 김수정;오상은;양재의
    • 한국환경농학회지
    • /
    • 제26권1호
    • /
    • pp.55-61
    • /
    • 2007
  • 본 연구에서는 ZVI 종류[Peerless unannealed(PU), Peerless annealed(PA)]별 처리농도(1, 5%, w/v), 초기 metolachlor 농도(200, 1000 mg/l) 및 온도(15, 25, $35^{\circ}C$)가 metolachlor의 분해에 미치는 kinetics를 평가하였다. ZVI에 의한 metolachlor의 분해는 first order kinetics모델로 설명할 수 있었다. ZVI의 처리 농도가 증가할수록 metolachlor 의 분해속도가 빨랐다. 5%(w/v)의 PU와 PA ZVI를 처리시 metolachlor의 분해 반감기는 각각 9.9와 6.5 h 이었고 metolachlor는 72 및 48 h 에 모두 분해되었다. metolachlor의 분해상수(k)는 초기 metolachlor 농도가 낮을 때 컸다. ZVI에 의한 metolachlor의 분해는 온도가 높을수록 증가되었고 15, 25, $35^{\circ}C$에서 metolachlor의 분해상수(k)는 각각 0.0805, 0.1017, 0.3116 /h 이었다. ZVI에 의한 metolachlor 분해 시 2종류의 분해산물이 동정되었는데 이는 탈염소화된 metolachlor$(C_{13}H_{18}NO)$, 탈염소화-탈알킬화된 metolachlor$(C_{12}H_{17}NO)$이었다. PA ZVI가 PU ZVI 보다 metolachlor를 분해하는데 효율적임을 알 수 있었다. ZVI는 탈염소화기작에 의해 metolachlor를 분해함을 알 수 있었다.

영가철 및 개질 영가철을 이용한 triclosan의 환원분해 특성 (Reduction Characteristics of Triclosan using Zero-valent Iron and Modified Zero-valent Iron)

  • 최정학;김영훈
    • 한국환경과학회지
    • /
    • 제26권7호
    • /
    • pp.859-868
    • /
    • 2017
  • In this study, the reductive dechlorination of triclosan using zero-valent iron (ZVI, $Fe^0$) and modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium-coated iron (Pd/Fe)) was experimentally investigated, and the reduction characteristics were evaluated by analyzing the reaction kinetics. Triclosan could be reductively decomposed using zero-valent iron. The degradation rates of triclosan were about 50% and 67% when $Fe^0$ and Aw/Fe were used as reductants, respectively, after 8 h of reaction. For the Pd/Fe system, the degradation rate was about 57% after 1 h of reaction. Thus, Pd/Fe exhibited remarkable performance in the reductive degradation of triclosan. Several dechlorinated intermediates were predicted by GC-MS spectrum, and 2-phenoxyphenol was detected as the by-product of the decomposition reaction of triclosan, indicating that reductive dechlorination occurred continuously. As the reaction proceeded, the pH of the solution increased steadily; the pH increase for the Pd/Fe system was smaller than that for the $Fe^0$ and Aw/Fe system. Further, zero-order, first-order, and second-order kinetic models were used to analyze the reaction kinetics. The first-order kinetic model was found to be the best with good correlation for the $Fe^0$ and Aw/Fe system. However, for the Pd/Fe system, the experimental data were evaluated to be well fitted to the second-order kinetic model. The reaction rate constants (k) were in the order of Pd/Fe > Aw/Fe > $Fe^0$, with the rate constant of Pd/Fe being much higher than that of the other two reductants.

이금속성 형태 몰리브덴 촉매를 이용한 질소화합물의 반응속도 연구 (A Study on the Reaction Kinetics of Nitrogen Compounds over Bimetallic Molybdenum Catalysts)

  • 안범수
    • 한국응용과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.349-354
    • /
    • 2005
  • It is interesting to discover the reaction kinetics of the newly developed molybdenum containing catalysts. The dissociation/adsorption of nitrogen on molybdenum surface is known to be structure sensitive, which is similar to that of nitrogen on iron surface. The rates over molybdenum nitride catalysts are increased with the increase of total pressure. This tendency is the same as that for iron catalyst, but is quite different from that for ruthenium catalyst. The activation energies of the molybdenum nitride catalysts are almost on the same level, although the activity is changed by the addition of the second component. The reaction rate is expressed as a function of the concentration of reactants and products. The surface nature of $CO_3Mo_3N$ is drastically changed by the addition of alkali, changing the main adsorbed species from $NH_2$ to NH on the surface. The strength of $NH_x$ adsorption is found to be changed by alkali dopping.

Sex-specific Profiles of Blood Metal Levels Associated with Metal-Iron Interactions

  • Lee, Byung-Kook;Kim, Yangho
    • Safety and Health at Work
    • /
    • 제5권3호
    • /
    • pp.113-117
    • /
    • 2014
  • The mechanisms by which iron is absorbed are similar to those of divalent metals, particularly manganese, lead, and cadmium. These metals, however, show different toxicokinetics in relation to menarche or menopause, although their interaction with iron is the same. This review focuses on the kinetics of these three toxic metals (manganese, lead, and cadmium) in relation to menarche, pregnancy, and menopause. The iron-manganese interaction is the major factor determining sex-specific differences in blood manganese levels throughout the whole life cycle. The effects of estrogen overshadow the association between iron deficiency and increased blood lead concentrations, explaining why women, despite having lower ferritin concentrations, have lower blood lead concentrations than men. Iron deficiency is associated with elevated cadmium levels in premenopausal women, but not in postmenopausal women or men; these findings indicate that sex-specific differences in cadmium levels at older ages are not due to iron-cadmium interactions, and that further studies are required to identify the source of these differences. In summary, the potential causes of sex-specific differences in the blood levels of manganese, lead, and cadmium differ from each other, although all these three metals are associated with iron deficiency. Therefore, other factors such as estrogen effects, or absorption rate as well as iron deficiency, should be considered when addressing environmental exposure to toxic metals and sex-specific differences in the blood levels of these metals.

고체철-용융아연의 용해반응 (The Dissolving Reaction of Solid Iron with Molten Zinc)

  • 윤병하;정인상;박경채
    • 한국표면공학회지
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 1976
  • The dissolving and growth kinetics of intermetallic compounds for the reaction between solid iron and molten zinc were studied under nitorgen atmosphere over the temperature range between470$^{\circ}C$ and 680$^{\circ}C$. The rates of dissolution of solid iron into molten zinc were obtained under a static conditon, The amount of dissolution of sold iron and the growth of intermetalic compounds could be determined by means of microscopy. The thickness of intermetallic compound at a given temperature increases with increasing time, whereas for a given time decreases with increasing temperature . The rate of dissolution is controlled by the diffusion process of iron in the effective boundary layer of molten zinc over the temperature range 470$^{\circ}$-530$^{\circ}C$, 570$^{\circ}$-620$^{\circ}C$, and 650$^{\circ}$-665$^{\circ}C$, while by the surface reaction over the range 530$^{\circ}$-570$^{\circ}C$ and 620$^{\circ}$-650$^{\circ}C$.

  • PDF

Iron Starvation-Induced Proteomic Changes in Anabaena (Nostoc) sp. PCC 7120: Exploring Survival Strategy

  • Narayan, Om Prakash;Kumari, Nidhi;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.136-146
    • /
    • 2011
  • This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the $7^{th}$ day, and a decline in expression from the $15^{th}$ day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the $N_2$-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.