Browse > Article
http://dx.doi.org/10.5338/KJEA.2007.26.1.055

Kinetics of Metolachlor Degradation by Zerovalent Iron  

Kim, Su-Jung (Division of Biological Environment, Kangwon National University)
Oh, Sang-Eun (Division of Biological Environment, Kangwon National University)
Yang, Jae-E. (Division of Biological Environment, Kangwon National University)
Publication Information
Korean Journal of Environmental Agriculture / v.26, no.1, 2007 , pp. 55-61 More about this Journal
Abstract
Metolachlor may pose a threat to surface and ground water qualities due to its high solubility in water, Zerovalent iron (ZVI) releases $e^-$ which can degrade the organochlorinated compounds. The objective of this research was to evaluate the kinetics of metolachlor degradation as affected by ZVI sources [Peerless unannealed (PU) and Peerless annealed (PA)] and ZVI levels (1 and 5%) under batch conditions at different metolachlor concentrations (200 and 1000 mg/l) and temperatures (15, 25, and $35^{\circ}C$). The effectiveness of ZVI on metolachlor degradation was assessed by characterizing the dechlorinated metolachlor byproduct molecules. Metolachlor degradation by ZVI followed the first-ordered kinetics with a higher rate constant at higher level of ZVI treatment. At 5% (w/v) of PU and PA treatment, the half-lives of metolachlor degradation were 9.93 and 6.51 h and all of the initial metolachlor were degraded in 72 and 48 h, respectively. Rate constants (k) of metolachlor degradation were higher at the lower initial metolachlor concentration. The metolachlor degradation by ZVI was temperature dependent showing that the rate constant (k) at 15, 25, and $35^{\circ}C$ were 0.0805, 0.1017, and 0.3116 /h, respectively. The ZVI-mediated metolachlor degradation yielded two byproduct molecules identified as dechlorinated metolachlor $(C_{13}H_{18}NO)$ and dechlorinated-dealkylated metolachlor $(C_{12}H_{17}NO)$. The PA ZVI was more effective than PU ZVI in metolachlor degradation.
Keywords
Dealkylation; Dechlorination; Kinetics; Metolachlor; Zerovalent iron (ZVI);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yang, J. E., Chung, D. Y., Kim, J. G., and Chung, J. B. (2001) Soil contamination and agricultural environment. In Agricultural environment. Yang, J. E. and Lee, K. S. (eds) pp. 85-125. The Korean Society of Agriculture and Environment, Suwon, Korea
2 Singh, J., Comfort, S. D., and Shea, P. J. (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J. Environ. Qual. 27, 1240-1245   DOI   ScienceOn
3 Fiedor, J. N., Bostick, W. D., Jarabek, R. J., and Farrel, J. (1998) Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environ. Sci. Technol. 32, 1466-1473   DOI   ScienceOn
4 Yang, J. E., Kim, J. S., Ok, Y. S., Kim, S. J., and Yoo, K. Y. (2006) Capacity of Cr(VI) reduction in an aqueous solution using different sources of zerovalent irons. Korean J. Chem. Eng. 23, 935-939   DOI
5 Park, J., Comfort, S. D., Shea, P. J., and Machacek, T. A. (2004) Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants. J. Environ. Qual. 33, 1305-1313   DOI   ScienceOn
6 Kim, J. S. (2001) Reduction of Cr(VI) using zerovalent iron (ZVI). MS Thesis, Kangwon National University, Chuncheon, Korea
7 Gotpagar, J. E., Grulke, T., and Bhattacharyya, D. (1997) Reductive dehalrogenation of trichloroethene using zero-valent iron. Environ. Prog. 16, 137-143   DOI   ScienceOn
8 Johnson, T. L., Scherer, M., and Tratnyek, P. G. (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 30, 2634-2640   DOI   ScienceOn
9 Gerald, R. E. and Douglas, T. D. (1998) Dechlorination of the chloroacetanilide herbicides alachlor and metolachlor by iron metal. Environ. Sci. Technol. 32, 1482-1487   DOI   ScienceOn
10 Timothy M. V., Craig, S. C., and Perry, L. M. (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21, 722-736   DOI   ScienceOn
11 Senseman, S. A., Lavy, T. L., Mattice, J. D., Gbur, E. E., and Briggs, W. S. (1997) Trace level pesticide detections in Arkansas surface waters. Environ. Sci. Technol. 31, 395-401   DOI   ScienceOn
12 Comfort, S. D., Shea, P. J., Machacek, T. A., Gaber, H., and Oh, B. T. (2001) Field-scale remediation of a metolachlor-contaminated spill site using zerovalent iron. J. Environ. Qual. 30, 1636-1643   DOI   ScienceOn
13 Funari, E., Donati, L., Sandroni, D., and Vighi, M. (1995) Pesticide levels in groundwater: value and limitations of monitoring. In Pesticide Risk in Groundwater. Vighi, M. and Funari, E. (eds.) pp. 3-44. CRC Press, Boca Raton, FL
14 Southwick, L. M., Willis, G. H., Bengston, R. L., and Lormand, T. J. (1990) Atrazine and metolachlor in subsurface drain water in Louisiana. J. Irrig. Drain. Eng. 116, 16-23   DOI
15 Kruger, E. L., Zhu, B., and Coats, J. R. (1996) Relative mobility of atrazine, five atrazine degradates, metolachlor, and simazine in soils of Iowa. Environ. Taxicol Chem. 15, 691-695   DOI
16 Rock, M. L., Kearney, P. C., and Hetz, G. R. (1998) Innovative remediation technology. In Pesticide remediation in soils and water. Keamey, P. C and Roberts, T. (eds.) pp. 285-306. John Wiley & Sons, New York
17 Leah, J. M. and Paul, G. T. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045-2053   DOI   ScienceOn
18 Novak, S. M., Portal, J. M., and Schiavon, M. (2001) Effects of soil type upon metolachlor losses in subsurface drainage. Chemosphere 42, 235-244   DOI   ScienceOn
19 Blowes, D. W., Ptacek, C. J., and Jabor, J. L. (1997) In situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: Laboratory studies. Environ. Sci. Technol. 31, 3348-3357   DOI   ScienceOn
20 Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D., and Powers, W. L. (1997) Removal of TNT and RDX from water and soil using iron metal. Environ. Pollut. 97, 55-64   DOI   ScienceOn
21 Bae, B. (2000) The effects of environmental conditions on the reduction rate of TNT by $Fe^0$. J. Korean Soil Environ. Sci. 5, 82-97