• Title/Summary/Keyword: iron(III) chloride

Search Result 44, Processing Time 0.028 seconds

Effect of Ethanolamine Species on Paper Aging by Metals (에탄올아민이 금속에 의한 종이의 노화 방지에 미치는 영향)

  • Yoon, Byung-Ho;Kim, Yong-Sik;Choi, Kyoung-Hwa
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.36-41
    • /
    • 2008
  • It is known that ethanolamines play a critical role for deacidification of paper sized by alum-rosin. However, amines also are effective as a chelating agent of metal. The present work was focused on whether amines could scavenge metals and prevent from the aging of paper. Metals such as alum, copper(II) and iron(III) was added to paper, and the paper treated with amines was aged in a thermo-hygrostat for 3-6 days. In the case of paper added to alum, the amines efficiency against paper aging was good in the oder of triethanolamine, diethanolamine and monoethanolamine attributable to the intensity of basicity and steric effect. Even in the case of paper treated with copper(II) chloride, iron(III) chloride, and copper(II) chloride, the significant preservation efficiency was shown by ethanolamine during accelerated aging. This outcome pinpoints the fact that ethanolamine can prevent paper aging not only from acid by neutralizing acid contained in paper but also from metals by producing of complexes with metals. These consequences above convince that ethanolamine makes it possible for mass deacidification for paper which contains acid and metals. Future studies should be conducted concerning whether, in reality, the treatment of its gas mode, in a single or multiple applications, has significant effect on lessening paper aging.

Effect of trace amount of ferrous and ferric ions on the dissolution of iron plate in magnetically treated 3% sodium chloride solution

  • Chiba, Atsushi;Ohki, Tomohiro;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • A 3% NaCl solution of 1 $dm^3$ circulated with 1.5 $dm^3/min$ by a pump for 24 h in the presence of magnetic field. An iron plate immersed in a $100cm^3$ of test solution for 24 h. The rest potential and pH on surface fixed after 3 h. Containing 0~120 ppm of Fe(II) ion, the dissolution in the magnetically treated solution rose comparing with that in the non-magnetically treated solution. The dissolution amount reached to maximum at 50 ppm, then fixed in the non-magnetically treated solution. When Fe(II) ion existed in the magnetically treated solution, dissolution accelerated a little. In the non-magnetic treated solution containing 10~125 ppm of Fe(III) ion existed, the dissolution accelerated. The dissolution amounts reached to maximum at 50 ppm, then decreased from maximum value. In the magnetically treated solution, the dissolution amounts reached to minimum until 50 ppm, then increased from minimum value. The dissolution amounts affected larger with increasing of magnetic flux density. Fe(II), Fe(III) ions and magnetic treatment affected to formation of $Fe(OH)_2$ and/or $Fe_3O_4$ films. The magnetically treated effects memorized about one month.

Asymmetric Ring Opening Reaction of Racemic Epoxides by Polymeric Chiral Salen Catalyst containing Metal Salts (금속염 함유 고분자형 키랄 살렌촉매에 의한 라세믹 에폭사이드의 광학선택적 비대칭 고리열림반응)

  • Lee, Kwang Yeon;Rahul, B. Kawthekar;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.562-567
    • /
    • 2007
  • The stereoselective synthesis of chiral terminal epoxide is of immense academic and industrial interest due to their use as versatile starting materials as well as chiral intermediates. In this study, new polymeric chiral Co(salen) complexes bearing tallium (III)chloride and iron (III)chloride (ferric chloride) have been synthesized and characterized. Their catalytic activity and selectivity have been demonstrated for the asymmetric ring opening of various terminal epoxides using water and phenol derivatives as nucleophiles. The easily prepared polymeric complexes exhibited very high enantioselectivity for the asymmetric ring opening of epoxides with $H_2O$ and phenol nucleophiles, providing enantiomerically enriched terminal epoxides (> 98% ee). The system described in this work is very efficient for the synthesis of chiral epoxide, 1,2-diol and ${\alpha}$-aryloxy alcohol intermediates.

A New Porous Carbon via an Exfoliation of n-Octylammonium Tetrachloroferrate(III)-Graphite Intercalation Complex

  • 권채원;김동훈;최진호
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1113-1116
    • /
    • 1998
  • A new graphite intercalation compound (GIC), n-octylammonium tetrachlorofeffate(Ⅲ)-graphite, has been derived from well-known ferric chloride graphite intercalation compound. X-ray diffration study shows that the basal spacing of this new GIC is 20.8 Å. In order to investigate the local geometry around the iron atom in the graphite layers, X-ray absorption spectroscopy experiments were performed. The first discharge capacity of its exfoliated form is found to be 862 mAh/g, which is more than double the value of pristine graphite (384 mAh/g). Such a drastic increase implies that the exfoliated graphite is a promising electrode material.

Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application (에어로졸 분무열분해법을 이용한 코발트페라이트-그래핀 복합체 분말 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • Cobalt-iron oxides have emerged as alternative electrode materials for supercapacitors because they have advantages of low cost, natural abundance, and environmental friendliness. Graphene loaded with cobalt ferrite ($CoFe_2O_4$) nanoparticles can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with $CoFe_2O_4$ nanoparticles. The $CoFe_2O_4$-graphene composites were synthesized from a colloidal mixture of GO, iron (III) chloride hexahydrate ($FeCl_3{\cdot}6H_2O$) and cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) respectively, via one step aerosol spray pyrolysis. Size of $CoFe_2O_4$ nanoparticles was ranged from 5 nm to 10 nm when loaded onto 500 nm CGR. The electrochemical performance of the $CoFe_2O_4$-graphene composites was examined. The $CoFe_2O_4$-graphene composite electrode showed the specific capacitance of $253F\;g^{-1}$.

Nitrate Removal by $FeCl_3$-Treated Activated Carbon (염화철 처리 활성탄에 의한 질산염 제거)

  • 정경훈;최형일;정오진
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.63-68
    • /
    • 2001
  • A laboratory experiment was performed to invstigate the nitrate removal using FeCl$_3$ -treated activated carbon. Iron chloride(III) was coated onto the surface of activated carbon. The removal efficiency of nitrate was increased with increasing of FeCl$_3$ was used for coating material. About 22~26mg of Fe per unit g of activated carbon was adsorbed. The nitrate removal was not affected by the pH under the experiment range of pH, but the pH value in solution decrease to 3.5~4.0 after reaction. The removal efficiency of nitrate was increased with increasing of dosage of adsorbents. Ammonia was not detected and the Fe concentration as low as 0.22mg/$\ell$ was desorbed from the adsorbents. The adsorbents was regenerated using KCl solution, and recovery was 76.6% at 1 M of KCl. The adsorption of nitrate by FeCl$_3$-treated activated carbon followed the Freundlich isotherm equation and the Freundlich constant, 1/n, was 0.346. These results showed that the FeCl$_3$-treated activated carbon could serve as the basis of a useful nitrate removal.

  • PDF

Purification and Characterization of a Fibrinolytic Enzyme from Snake Venom of Macrovipera lebetina turanica

  • Kwon, Ki-Rok;Park, Do-Il;Lee, Seung-Bae;Choi, Suk-Ho
    • Journal of Pharmacopuncture
    • /
    • v.14 no.2
    • /
    • pp.5-14
    • /
    • 2011
  • Objectives: Fibrinolytic enzyme preparations were isolated from the snake venom of Macrovipera lebetica turanica in this study. Methods: The purity of the preparations was determined using SDS-PAGE and the enzymic characteristics of the purified fibrinolytic enzyme were determined. Results: 1. All of the two preparations with fibrinolytic activity obtained from the snake venom of M. l. turanicat contained the major polypeptide with the molecular weight of 27,500. One of the preparation showed purified fibrinolytic enzyme. 2. The purified fibrinolytic enzyme hydrolyzed ${\alpha}$-chain of fibrinogen faster than ${\beta}$-chain but not ${\gamma}$-chain. 3. The fibrinolytic activity was inhibited completely by EDTA, EGTA, 1,10-phenanthroline, and dithiothreitol. 4. The fibrinolytic activity was inhibited completely by calcium chloride, iron(III) chloride, mercuric chloride, and cobalt (II) chloride. 5. The fibrinolysis zone formed after addition of zinc sulfate was smaller but clearer than the control. Conclusions: These results suggested that the fibrinolytic enzyme purifed from the snake venom of M. l turanica was a metalloprotease containing dithiol group.

Preparation and Characteristics of Polypyrrole/sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) Composite Electrode (폴리피롤/설폰화 폴리(2,6-디메틸-1,4-페닐렌 옥사이드) 복합전극의 제조 및 특성)

  • Huh, Yang-Il;Jung, Hong-Ryun;Lee, Wan-Jin
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.74-79
    • /
    • 2007
  • Polypyrrole (PPy) was made by an emulsion polymerization using iron (III) chloride ($FeCl_3$) as an initiator and dodecyl benzene sulfuric acid (DBSA) as an emulsifier and dopant. Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) was sulfonated by chlorosulfonic acid (CSA). The cathode was composed of $PPy^+DBS^-$ complex, conductor powder, and PPO or sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO) as a binder or dopant. The charge-discharge performance of $PPy^+DBS^-/SPPO$ cathode was increased as the extent of about 50%, than $PPy^+DBS^-/PPO$. This is because SPPO played a role as a binder as well as a dopant. In addition, sulfonation brings out the increase of miscibility between PPy and SPPO, and the increase of contact area between cathode and electrolyte.

Study on Synthesis of Honeycomb-patterned Resin Dispersed Silver Nanoparticles (은 나노입자가 분산된 Honeycomb-patterned 수지 합성에 대한 연구)

  • Lee, Dong Chang;Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.711-718
    • /
    • 2017
  • Silver nanoparticles were attached by chemical reduction after synthesizing a porous PVK-CTA complex. The PVK-CTA complex was synthesized by polymerizing N-vinylcarbazole in a CTA-chloroform solution using iron(III) chloride as an oxidizing agent and a honeycomb-pattern with uniformly formed macropores was formed by applying steam to the complex surface soaked with a volatile solvent under humid conditions. Using TTF as a reducing agent and PVP as a dispersant, silver nanoparticles were attached on the Honeycomb-pattern complex surface through chemical reduction. The formation of the complex was confirmed by FT-IR and UV-Vis spectrometry, and the degree of thermal decomposition of the complexes was analyzed after N-vinylcarbazole was polymerized by varying its concentration. The uniformity of the pores on the composite surface and the dispersibility of the attached silver nanoparticles were investigated by SEM. The dispersibility of the silver nanoparticles was also analyzed by varying the concentrations of reducing agent and dispersant and precursor.

Optimization of MOF-235 Synthesis by Analysis of Statistical Design of Experiment (통계학적 실험계획법 해석을 통한 MOF-235 합성 최적화)

  • Chung, Mingee;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.615-619
    • /
    • 2019
  • Statistical design of experiments was performed to optimize MOF-235 synthesis process. Concentrations of terephthalic acid (TPA), iron (III) chloride hexahydrate, N,N-dimethylformamide (DMF) and ethanol were important factors to develop the crystal structure of MOF-235. MOF-235 was synthesized with various concentrations of the listed chemicals above and the crystallinity was measured by XRD. The effect of the composition on the synthesis of MOF-235 was evaluated using a statistical analysis. For the variance analysis using F-test, the concentration of ethanol showed the greatest effect on the crystallinity and TPA the least influential. A regression model for predicting the crystallinity of MOF-235 was derived and the prediction results for two synthetic variables were presented using contour plots. Finally, the crystallinity was predicted by a mixture method with $FeCl_3$, ethanol and DMF.