Article

통계학적 실험계획법 해석을 통한 MOF-235 합성 최적화

정민지 · 유계상[†]

서울과학기술대학교 화공생명공학과 (2019년 8월 20일 접수, 2019년 9월 1일 심사, 2019년 9월 4일 채택)

Optimization of MOF-235 Synthesis by Analysis of Statistical Design of Experiment

Mingee Chung and Kye Sang Yoo[†]

Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea

(Received August 20, 2019; Revised September 1, 2019; Accepted September 4, 2019)

초 록

통계학적 실험계획법을 이용하여 다공성 구조체인 MOF-235 합성 공정 최적화를 수행하였다. 합성에 사용되는 주성분 인 terephthalic acid (TPA), Iron (III) chloride hexahydrate, N,N-dimethylformamide (DMF) 및 ethanol의 농도가 MOF-235의 결정구조를 형성하는데 중요한 요소가 되었다. 다양한 농도의 4가지 성분을 이용하여 MOF-235를 합성한 후 XRD를 이용하여 결정도를 측정하였다. 16가지 실험조건을 통해 합성한 MOF-235의 결정도 결과를 통계학적 해석을 통해 주 성분의 조성이 입자의 합성에 미치는 영향을 분석하였다. F 검정법을 이용한 분산분석에서 에탄올의 농도가 입자의 결정도에 가장 큰 영향을 미치고 TPA가 가장 영향력이 작은 것으로 분석되었다. 결정도를 예측할 수 있는 희귀모델을 도출하였고 2가지 합성변수에 대한 예측결과를 등고선도를 이용하여 제시하였다. 마지막으로 혼합물법을 이용하여 3가지 합성인자가 미치는 결정도를 예측하여 제시하였다.

Abstract

Statistical design of experiments was performed to optimize MOF-235 synthesis process. Concentrations of terephthalic acid (TPA), iron (III) chloride hexahydrate, N,N-dimethylformamide (DMF) and ethanol were important factors to develop the crystal structure of MOF-235. MOF-235 was synthesized with various concentrations of the listed chemicals above and the crystallinity was measured by XRD. The effect of the composition on the synthesis of MOF-235 was evaluated using a statistical analysis. For the variance analysis using F-test, the concentration of ethanol showed the greatest effect on the crystallinity and TPA the least influential. A regression model for predicting the crystallinity of MOF-235 was derived and the prediction results for two synthetic variables were presented using contour plots. Finally, the crystallinity was predicted by a mixture method with FeCl₃, ethanol and DMF.

Keywords: MOF-235, Design of experiment, Statistical optimization

1. 서 론

최근 여러 가지 소재 분야에서 각광을 받고 있는 metal organic frameworks (MOFs)은 금속이온 또는 금속 클러스터와 유기 리간드 (ligand) 사이의 공유결합으로 1~3 차원의 결정 구조를 형성하여 높은 결정성과 다양한 기공크기 및 넓은 비표면적 가진 새로운 종류의 화 합물질이다[1]. MOFs 구조는 합성에 사용되는 유기 리간드 물질과 금 속 성분에 따라 조절할 수 있는 장점이 있다[2]. 또한 기존에 사용되던

한 가지 금속과 유기 리간드의 조합에서 벗어나 금속이온을 혼합하거 나 복수의 유기 리간드 및 새로운 작용기를 도입하여 다양한 구조와 기능을 가지는 MOFs을 합성하기 위한 연구가 진행되고 있다[3,4]. 이 와 같이 MOFs의 비표면적, 기공크기 및 작용기를 조절할 수 있으므 로 촉매반응[5-7], 기체 흡착[8,9], 기체 분리[10,11] 등 다양한 분야에 서 기존의 메조기공의 실리카나 제올라이트를 대체할 수 있을 것으로 여겨진다.

MOFs 중 하나인 MOF-235는 오렌지색 결정으로 육방정계 단결정 구조를 가지며 선형 테레프탈산을 통해 연결된 코너 공유 8면체 철 삼량체로 구성된다. 구체적으로는 옥소 중심의 trinuclear iron clusters 와 benzenedicarboxylate 링크로 구성된 삼각 프리즘 구조를 볼 수 있 다[12]. 이와 같은 결정구조로 인하여 넓은 공극 부피와 다수의 열린 금속 site를 형성하게 되어 촉매, 흡착제, 전극물질 및 다양한 분야에 적용이 가능하다[13-16]. 따라서 MOF-235를 합성하기 위한 여러 가

[†] Corresponding Author: Seoul National University of Science & Technology, Department of Chemical & Biomolecular Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea Tel: +82-2-970-6602 e-mail: kyoo@snut.ac.kr

pISSN: 1225-0112 eISSN: 2288-4505 @ 2019 The Korean Society of Industrial and Engineering Chemistry. All rights reserved.

Run	TPA (mol) [X ₁]	FeCl ₃ (mol) [X ₂]	EtOH (kmol) [X ₃]	DMF (kmol) [X ₄]	Relative crystallinity (%)
1	1.0	1.0	0.528	0.628	94.2
2	1.0	1.0	0.528	0.314	79.8
3	1.0	1.0	0.264	0.314	41.8
4	1.0	0.5	0.528	0.628	43.1
5	1.0	0.5	0.528	0.314	38.4
6	1.0	0.5	0.264	0.314	14.6
7	0.5	0.5	0.264	0.314	38.8
8	0.5	0.5	0.264	0.628	48.4
9	0.5	0.5	0.528	0.628	62.5
10	0.5	1.0	0.528	0.628	71.7
11	0.5	1.0	0.528	0.314	57.4
12	0.5	1.0	0.264	0.628	48.7
13	1.0	0.5	0.264	0.628	40.4
14	0.5	1.0	0.264	0.314	19.7
15	1.0	2.0	0.528	0.628	90.8
16	1.0	1.0	1.056	0.628	100.0

Table 1. Obtained Values for Experimental Design in MOF-235 Synthesis

지 방법 및 산업화를 위한 최적의 합성공정 연구가 활발히 진행 중이다. 하지만 MOFs의 합성방법이 다양하고 사용되는 물질의 종류가 증 가할수록 최적의 합성조건을 얻기 위한 실험의 수는 급속히 증가하게 된다. 그 결과 전통적인 방식인 trial and error로는 최적의 합성 조건 을 찾는 데는 어려움이 있다. 이와 같은 문제를 해결하기 위하여 통계 학적 분석법을 이용하는 연구에 대하여 관심이 높아지고 있다. 통상 적으로 통계학적 분석법에서는 실험 자료의 분석(analysis) 및 최적화 (optimization)법을 사용한다[17]. 분석단계에서는 얻어진 실험 자료를 이용하여 적절한 모형을 찾고, 최적화 단계에서는 이를 이용하여 실 험 인자들의 최적조건을 찾는다[18]. 다시 말해 최소한의 실험 결과를 가지고 통계학적으로 실효성에 대한 평가를 거쳐 의미 있는 결과를 도출한다. 이후 그 결과를 가지고 통계학적으로 여러 가지 합성 결과 를 예측하는 것이다. 이를 통해 최적의 합성공정을 개발하는데 필요 한 실험의 수를 줄일 수 있고 더욱 정확한 최적화를 하는데 기여한다. 본 연구에서는 MOF-235 합성공정에 사용되는 4가지 물질의 조성 이 입자의 결정도의 미치는 영향을 통계학적 방법을 이용하여 해석하 였다. 4가지 요인인자인 TPA, 염화철, 에탄올 및 DMF를 가지고 다양 한 조성에서 MOF-235를 합성하였다. 이후 XRD 분석을 통하여 결정 도를 계산하여 이를 반응인자로 사용하였다. 분산분석법을 이용하여 요인인자가 반응인자에 미치는 영향도를 분석하였다. 이를 바탕으로 결정도를 예측할 수 있은 모델을 회귀분석법을 이용하여 계산하였다. 이를 통해 반응인자를 최적화하는 요인인자의 수준 조합을 찾아내어 최적의 실험조건을 예측하였다.

2.실 험

실험에 사용한 물질인 Iron (III) chloride hexahydrate (FeCl₃ · 6H₂O, 97%)와 terephthalic acid (TPA, 98%)는 Sigma Aldrich에서 N,N-dimethylformamide (DMF)과 ethanol은 대정화금에서 구매하였다. 먼저 비 이커에 TPA와 DMF를 넣고 10 min간 교반하였다. 이후 염화철을 첨 가한 후 순차적으로 에탄올을 넣고 30 min간 교반하였다. 이후 혼합

Figure 1. XRD patterns of MOF-235 prepared with different ratios of 4 precursors. (a) Run 16, (b) run 11, (c) run 6 in Table 1.

물을 autoclave에 옮긴 후 80 ℃에서 24 h 동안 합성반응을 수행하였 다. 반응 후 생성된 오랜지색 결정을 원심분리기를 이용하여 분리한 후에 에탄올과 DMF를 이용하여 세척하였다. 이후 80 ℃에서 24 h 동 안 건조한 후 MOF-235 입자를 얻었다. 제조된 MOF-235의 결정구조 를 알아보기 위해 X선 회절 분석을 수행하였으며, 측정장비로는 CuKa 회절(wavelength 1.5406 Å)을 이용하는 Rigaku Denki사의 powder X-선 회절분석기(D/max = IIIC)를 사용하였다. 실험조건 계획 및 결과 분 석은 Minitab 17을 이용하여 통계적 실험계획법을 수행하였다.

3. 결과 및 고찰

먼저 MOF-235의 합성에 사용되는 4가지 주요성분인 TPA, 염화철, 에탄올 및 DMF의 성분비를 조절하면서 16가지 다른 조성의 시료를 가지고 합성을 실시하였다. 서로 다른 16가지 조성비는 Table 1에 제

Table 2. Analysis of Variance for Crystallinity of MOF-235

	DF	Adj SS	Adj MS	F	Р
TPA	1	18.18	18.18	0.09	0.773
FeCl3	2	1,366.32	683.16	3.31	0.084
EtOH	2	2,091.46	1045.73	5.06	0.034
DMF	2	878.44	878.44	4.25	0.069
Residual error	9	1,859.80	206.64		
Sum	15	9,824.19			

Figure 2. Main effect plot for relative crystallinty of MOF-235 synthesized under different conditions; TPA and FeCl₃ (mol), EtOH and DMF (kmol).

시한 바와 같이 사용하였다. TPA는 0.5~1.0몰 범위에서 염화철은 0.5~2몰 사이에서 합성을 하였다. 상대적으로 많은 양인 에탄올과 DMF는 각각 264~1,056, 314~628몰 범위에서 사용하였다. 합성 후 얻어진 MOF-235의 결정구조를 분석하기 위해 XRD를 사용하였다. Figure 1에 도시한 바와 같이 16개 샘플 중 결정도가 가장 높고, 가장 낮고 그리고 중간인 MOF-235의 결정구조를 나타내었다. 그 결과 모든 샘플은 순수한 MOF-235 결정구조를 갖고 있었다. Figure 1에서 도시한 바와 같이 주요한 peak가 2 θ = 12.6, 19, 그리고 22°에 나타났다. 이처럼 4가지 성분의 조성비가 MOF-235의 결정구조에 중요한 영향을 미친다는 것을 알 수 있다.

4가지 인자들에 의해 결정되는 MOF-235의 상대 결정도를 예측하고 이를 이용하여 관심 있는 통계적 추론을 하기 위하여 회귀분석을 실시하였다. 종속변수가 정규분포화 되지 않을 경수 사용하는 일반 선형 모델을 사용하여 회귀분석을 실시하였다. MOF-235의 결정도와 4가자 주요인자 사이의 상관관계를 아래와 같은 다항식으로 구해졌다.

$\begin{array}{l} \mbox{Relative crystallinity} = 67.22 \ \ - \ 1.19 \ \ TPA^{0.5} \ \ - \ 15.48 \ \ FeCl_3^{0.5} \ \ + \ 2.13 \\ \ \ FeCl_3 \ \ - \ 21.89 \ \ EtOH^{0.264} \ \ \ + \ 0.72 \ \ EtOH^{0.528} \ \ \ - \ 8.28 \ \ DMF^{0.314} \end{array}$

인자들 사이의 주효과와 교호작용의 유의성을 검증하기 위하여 Minitab을 이용하여 분산분석표 작성하여 Table 2에 도시하였다. 이 분산표에서 F 분포를 이용하여 해석하였다. F 분포는 실험요인이 변 동에 별다른 영향을 미치지 못한다면 실험요인에 의한 분산값이나 외 부요인에 의한 분산값이 거의 같은 값을 가진다는 논리하에 사용된다. 분산분석 결과 인자들 사이의 주효과는 유의하지만 교호작용은 유의 하지 않아 모두 플링된 것을 알 수 있다. Figure 2에 도시한 결정도에 대한 주효과도를 살펴보면 에탄올의 영향이 가장 큰 것으로 나타났고 TPA의 경우 그 영향이 거의 미비한 것을 알 수 있다. Table 2에서 유 의수준을 나타내는 p 값을 비교해 봐도 명백하게 주효과를 비교할 수 있다. 에탄올의 경우 p 값이 0.034로 가장 주효과도가 높았고 TPA는 0.773으로 영향이 매우 적은 것을 볼 수 있다. DMF는 염화철에 비해 서 p 값이 다소 낮아 영향이 상대적으로 조금 큰 것을 알 수 있다. 4가 지 실험요인의 독립적 효과 이외에 두 실험요인이 결합하여 나타날 수 있는 효과인 교호작용에 대한 결과를 Figure 3에 도시하였다. 통계 학적 분석 결과 4가지 인자 사이에는 교호작용에 의한 영향이 없는 것으로 계산되었다. 이 의미는 MOF-235 합성이 4가지 성분은 다른 성분의 농도에 거의 영향을 받지 않고 각각의 성분 농도에 따라 결정 도에 영향을 직접적으로 미친다는 것으로 해석할 수 있다. 하지만 TPA와 염화철의 교호작용은 통계학적으로는 영향이 없는 범위 안에 있지만 Figure 3에서 나타낸 것과 같이 상대적으로는 다른 물질에 비 해서는 어느 정도는 존재한다고 볼 수 있다. MOF-235의 형성 메커니 즘에서 알 수 있듯이 금속부분인 염화철과 linker 부분인 TPA의 농도 는 어느 정도 결정구조를 형성하는데 영향이 있다고 생각할 수 있다.

분산분석에 의해 TPA는 다른 3가지 주요인자에 비해 MOF-235의 결정도에 미치는 영향이 미비하다는 것을 알았다. 이에 TPA를 제외 한 3가지 인자들을 사용하여 결정도를 예측하였다. 우선 TPA의 농도 를 1몰로 고정하고 3가지 인자 중 2가지 인자에 따른 결정도를 등고 선도를 이용하여 예측하였다. Figure 4(a)에서 DMF가 623몰로 일정할 때 염화철과 에탄올의 농도에 따른 MOF-235의 결정도를 도시하였다. 염화철의 농도와 무관하게 에탄올의 농도는 높을수록 결정도는 전체 적으로 증가하는 것으로 예측되었다. 염화철의 경우 1~1.25 몰사이에 서 최적의 조건을 보임을 알 수 있었다. 다음으로 에탄올을 528몰로 일정하게 유지하고 염화철과 DMF의 영향이 결정도에 미치는 영향을 Figure 4(b)에 도시하였다. 염화철의 농도는 Figure 4(a)와 유사하게 1~1.25몰 사이에서 높은 결정도를 보였다. 하지만 DMF의 농도는 0.45몰 근처에서 가장 낮은 결정도를 보였다. 마지막으로 염화철을 일 정하게 유지하고 에탄올과 DMF의 농도가 MOF-235의 결정도에 미치 는 영향을 Figure 4(c)에 나타냈다. 이전의 두 경우와 달리 에탄올과 DMF의 농도가 모두 증가할수록 결정도가 증가하는 것으로 예측되었 다. 마지막으로 주요한 3개의 인자인 염화철, 에탄올 및 DMF의 농도

Figure 3. Interaction plot for relavity crystallinity of MOF-235 synthesized under different conditions; TPA and FeCl₃ (mol), EtOH and DMF (kmol).

Figure 4. Surface plot of relavity crystallinity of MOF-235 synthesized with various concentration of 2 major precusors; FeCl₃ (mol), EtOH and DMF (kmol).

Figure 5. Surface plot of relavity crystallinity of MOF-235 synthesized with various concentration of 3 major precusors under constant TPA concentration; FeCl₃ (mol), EtOH and DMF (kmol).

비가 MOF-235의 결정도에 미치는 영향을 혼합물법을 이용하여 등고 선도로 나타내었다. Figure 5에 도시한 바와 같이 3가지 물질의 농도 비는 결정도에 지대한 영향을 주었다.

4.결 론

최근 복잡하고 정교한 나노 입자의 합성에 대한 다양한 연구가 시 도되고 있으며 이에 따라서 합성공정의 최적화에 대한 어려움이 증대 되고 있다. 이를 해결하기 위한 방안으로 통계적 실험계획법에 대한 관 심이 증대되고 있다. 이에 본 연구에서는 MOF-235 합성공정에 대한 분석을 위해 통계학적 실험계획법을 수행하였다. 4가지 주요인자인 TPA, 염화철, 에탄을 및 DMF를 다양한 조성으로 합성한 후 회귀분석 및 분산분석을 통해 해석하였다. 그 결과 TPA의 농도는 MOF-235의 합성에 미비한 영향을 미치는 것으로 나타났다. 반면 에탄올의 농도 는 가장 큰 영향을 미치는 것으로 난타났다. 또한 4가지 주요인자 사이에는 교호작용이 거의 없는 것으로 판명되었다. 이와 같이 trial and error에 의존하던 기존의 나노입자의 합성공정의 최적화를 실험계획 법을 이용하면 보다 신속하게 이룰 수 있다. 특히 합성반응의 과정이 보다 다양해질수록 통계학적 분석법의 효과는 더욱 높아질 것 것으로 판단된다.

감 사

이 연구는 서울과학기술대학교 교내 학술연구비 지원으로 수행되었 습니다.

References

- O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials, *Nature*, 423, 705-714 (2003).
- 2. N. Stock and S. Biswas, Synthesis of metal-organic frameworks

(MOFs): Routes to various MOF topologies, morphologies, and composites, *Chem. Rev.*, **1122**, 933-969 (2012),

- Z. Wang and S. M. Cohen, Postsynthetic modification of metal-organic frameworks, *Chem. Soc. Rev.*, 38, 1315-1329(2009).
- Y. F. Song and L. Cronin, Postsynthetic covalent modification of metal-organic framework (MOF) materials, *Angew. Chem. Int. Ed.*, 47, 4635-4637 (2008).
- X. Li, J. Zhang, and W. Li, MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination, *J. Ind. Eng. Chem.*, 44, 146-154 (2016).
- A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, and F. Verpoort, Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations, *Chem. Soc. Rev.*, 44, 6804-6849 (2015).
- J. Kim, S. N. Kim, H. G. Jang, G. Seo, and W. S. Ahn, CO₂ cycloaddition of styrene oxide over MOF catalysts, *Appl. Catal. A*, 453, 175-180 (2013).
- M. Anbia and S. Sheykhi, Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption, *J. Ind. Eng. Chem.*, 19, 1583-1586 (2013).
- K. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin, and M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship, *Chem. Soc. Rev.*, 46, 3402-3430 (2017).
- Y.-R. Lee, S.-M. Cho, and W.-S. Ahn, Effects of polydimethyl- siloxane coating of Ni-MOF-74 on CH₄ storage, *Korean J. Chem. Eng.*, 35, 1542-1546 (2018).
- N. Jiang, Z. Deng, S. Liu, C. Tang, and G. Wang, Synthesis of metal organic framework (MOF-5) with high selectivity for CO₂/N₂ separation in flue gas by maximum water concentration approach, *Korean J. Chem. Eng.*, **33**, 2747-2755 (2016).
- A. C. Sudik, A. P. Côté, and O.M. Yaghi, Metal-organic frameworks based on trigonal prismatic building blocks and the new "acs" topology, *Inorg. Chem.*, 44, 2998-3000 (2005).
- M. Anbia, V. Hoseini, and S. Sheykhi, Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235), *J. Ind. Eng. Chem.*, 18, 1149-1152 (2012).
- E. Haque, J. W. Jun, and S. H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235), *J. Hazard. Mater.*, 185, 507-511 (2011).
- N. T. Tran, D. Kim, K. S. Yoo, and J. Kim, Synthesis of Cu-doped MOF-235 for the degradation of methylene blue under visible light irradiation, *Bull. Korean Chem. Soc.*, 40, 112-117 (2019).
- X. Tao, C. Sun, Y. Han, L. Huang, and D. Xu, The plasma assisted preparation of Fe-MOFs with high adsorption capacity, *Cryst. Eng. Comm.*, 21, 2541-2550 (2019).
- R. E. Walpole, K. E. Ye, Raymond, H. Myers, and S. L. Myers, *Probability and Statistics for Engineers and Scientists*, 9th ed., 639-652, Prentice Hall, Boston, USA (2012).
- R. L. Mason, R. F. Gunst, and J. L. Hess, *Statistical Design and Analysis of Experiments, with Applications to Engineering and Science*, 2nd ed., 568-597, Wiley-Interscience, New Jersey, USA (2003).