• Title/Summary/Keyword: ionosphere

Search Result 268, Processing Time 0.032 seconds

Heavy ion effects on mode conversion between electron and proton whistlers : A simulation study

  • 김은화;이동훈
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.37-37
    • /
    • 2003
  • Electron whistlers frequently excite proton whistlers. The proton whistlers appear on the dynamic spectrum as rising tones, which start after the reception of a short electron whistler, asymptotically approaching the local proton gyro-frequency. The proton whistlers are dispersed forms of lightning impulses and their dispersion can be explained by the effects of heavy ions such as H+ and He+ on the propagation of an electromagnetic wave in the ionosphere. In the ionosphere, a right-handed circularly-polarized electron whistler becomes coupled to a left-handed circularly-polarized proton whistler when the frequency becomes close to a cross-over frequency. By adopting the multi-fluid numerical wave model, we examine how the mode coupling varies as the ion composition changes along altitude in the mid-latitude ionosphere. The time histories and dynamic spectra of electric fields are presented. In addition, we compare our results with the previous theoretical and observational studies.

  • PDF

The height variation of F2 peak density using Anyang Ionosonde measurements for GNSS ionospheric model

  • Kim, Eo-Jin;Chung, Jong-Kyun;Kim, Yong-Ha;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.24.3-24.3
    • /
    • 2008
  • The signals transmitted from satellites of Global Navigation Satellite System (GNSS) interact with the plasma of the ionosphere. To study the impact of the ionospheric plasma on GNSS applications a comprehensive knowledge of the ionosphere is required. Especially the correct measurement of the ionosphere such as the peak height of the F2 layer peak electron density (hmF2) is important for the GNSS ionospheric model. Anyang ionosonde station ($37.39^{\circ}N$, $126.95^{\circ}E$) has been operating from October 2000 and the accumulated data for 8 years may allow us to obtain climatological characteristics of middle latitude ionospheric F region for GNSS application. We analyzed the variations of the hmF2 and NmF2 over Anyang station for different conditions of solar activity, geomagnetic activity, season, and local time, and we compared our results with the IRI model.

  • PDF

Effectiveness Criteria for Methods of Identifying Ionospheric Earthquake Precursors by Parameters of a Sporadic E Layer and Regular F2 Layer

  • Korsunova, Lidiya P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.137-140
    • /
    • 2015
  • The results of the study of ionospheric variations in the summer months of 1998-2002 at an ionospheric station of vertical sounding "Petropavlovsk-Kamchatsky" are presented. Anomalous variations of virtual sporadic-E height (h'Es), Es blanketing frequency (fbEs), and the critical frequency of the ionospheric F2 layer (foF2) (which can be attributed to the possible earthquake precursors) are selected. The high efficiency of the selection of ionospheric earthquake precursors based on the several parameters of Es and F2 layers is shown. The empirical dependence, which reflects the connection between the lead-time of the earthquake moment, the distance to the epicenter from the observation point, and the magnitude of the earthquake are obtained. This empirical dependence is consistent with the results of the detection of earthquake precursors by measuring the physical parameters of the Earth's crust in the same region.

Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach

  • Choi, Byung-Kyu;Lee, Woo-Kyung;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.359-366
    • /
    • 2010
  • In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS). The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC) based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.

Ionospheric F2-layer Perturbations Observed After the M8.8 Chile Earthquake on February 27, 2010, at Long Distance from the Epicenter

  • Hegai, Valery V.;Kim, Vitaly P.;Legen'ka, Anna D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The F2-layer critical frequency (foF2) data from several ionosondes are employed to study the long-distance effect of the M8.8 Chile Earthquake of February 27, 2010, on the F2 layer. Significant perturbations of the peak F2-layer electron density have been observed following the earthquake at two South African stations, Hermanus and Madimbo, which are located at great circle distances of ~8,000 and ~10,000 km from the earthquake epicenter, respectively. Simplified estimates demonstrate that the observed ionospheric perturbations can be caused by a long-period acoustic gravity wave produced in the F-region by the earthquake.

Disturbance in the Daytime Midlatitude Upper F Region Associated with a Medium Scale Electrodynamic Vortex Motion of Plasma

  • Hegai, Valery V.;Kim, Vitaly P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.207-210
    • /
    • 2016
  • Under the assumption of the presence of a medium-scale E × B drift vortex of plasma in the daytime midlatitude F region, and using a simplified ionospheric model, we demonstrate that the E × B drift produces noticeable perturbations in the horizontal distribution of the plasma density in the upper F region. The pattern of ion density perturbations shows two separate medium scale domains of enhanced and reduced ion density with respect to the background. The E × B drift does not produce multiple small-scale ion density irregularities through plasma mixing because of the suppression effect of the field-aligned ambipolar plasma diffusion.

Analysis of Ionospheric Spatial Gradient for Satellite Navigation Systems (위성항법시스템 적용을 위한 전리층 지연값 기울기 연구)

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Eun-Sung;Jun, Hyang-Sig
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.898-904
    • /
    • 2006
  • Ionospheric storms, caused by the interaction between Solar and geomagnetic activities, may degrade the differential GNSS(Global Navigation Satellite Systems) performance significantly, and the importance of the ionospheric storm research is growing for the GBAS(Ground-Based Augmentation System) and SBAS(Satellite-Based Augmentation System) development. In order to support Korean GNSS augmentation system development, a software tool for analyzing the regional ionosphere is being developed and its preliminary results are discussed. After brief description of the ionosphere and ionospheric storm, the research topics on the GBAS applications are discussed. The need for ionospheric spatial gradient analysis is described and some results on the ionospheric spatial gradient during recent storm periods are discussed.

Measurement of Earth's Current -Toward an indirect observation of Ionosphere (지구전류의 측정 -전리층 간접측정 모색)

  • Kwak, J.;Kim, S. Y.;Koh, J.;Kwon, M.;Choi, E.;Lee, S.;Kim, D.;Min, S.;Park, D.;Kim, D.;Choi, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 1987
  • Earth currents with 10~20 ${\mu}A$ flow due to a magnetic induction by large currents flowing through the ionosphere. In order to measure the behaviour of ionosphere indirectly, earth currents will be measured and the results will be reported.

  • PDF

The Morphology of Equatorial Plasma Bubbles - a review

  • Kil, Hyosub
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Plasma bubbles that occur in the equatorial F-region make up one of the most distinguishing phenomena in the ionosphere. Bubbles represent plasma depletions with respect to the background ionosphere, and are the major source of electron density irregularities in the equatorial F-region. Such bubbles are seen as plasma depletion holes (in situ satellite observations), vertical plumes (radar observations), and emission-depletion bands elongated in the north-south direction (optical observations). However, no technique can observe the whole three-dimensional structure of a bubble. Various aspects of bubbles identified using different techniques indicate that a bubble has a "shell" structure. This paper reviews the development of the concepts of "bubble" and "shell" in this context.

QZSS TEC Estimation and Validation Over South Korea

  • Byung-Kyu Choi;Dong-Hyo Sohn;Junseok Hong;Woo Kyoung Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2023
  • The ionosphere acts as the largest error source in the Global Navigation Satellite System (GNSS) signal transmission. Ionospheric total electron content (TEC) is also easily affected by changes in the space environment, such as solar activity and geomagnetic storms. In this study, we analyze changes in the regional ionosphere using the Qusai-Zenith Satellite System (QZSS), a regional satellite navigation system. Observations from 9 GNSS stations in South Korea are used for estimating the QZSS TEC. In addition, the performance of QZSS TEC is analyzed with observations from day of year (DOY) 199 to 206, 2023. To verify the performance of our results, we compare the estimated QZSS TEC and CODE Global Ionosphere Map (GIM) at the same location. Our results are in good agreement with the GIM product provided by the CODE over this period, with an averaged difference of approximately 0.1 TECU and a root mean square (RMS) value of 2.89 TECU.