Browse > Article
http://dx.doi.org/10.5140/JASS.2017.34.1.1

Ionospheric F2-layer Perturbations Observed After the M8.8 Chile Earthquake on February 27, 2010, at Long Distance from the Epicenter  

Hegai, Valery V. (Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN))
Kim, Vitaly P. (Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN))
Legen'ka, Anna D. (Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN))
Publication Information
Journal of Astronomy and Space Sciences / v.34, no.1, 2017 , pp. 1-5 More about this Journal
Abstract
The F2-layer critical frequency (foF2) data from several ionosondes are employed to study the long-distance effect of the M8.8 Chile Earthquake of February 27, 2010, on the F2 layer. Significant perturbations of the peak F2-layer electron density have been observed following the earthquake at two South African stations, Hermanus and Madimbo, which are located at great circle distances of ~8,000 and ~10,000 km from the earthquake epicenter, respectively. Simplified estimates demonstrate that the observed ionospheric perturbations can be caused by a long-period acoustic gravity wave produced in the F-region by the earthquake.
Keywords
seismo-ionospheric coupling; ionospheric F2 layer; acoustic gravity wave; ionospheric perturbation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Artru J, Farges T, Lognonne P, Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling, Geophys. J. Int. 158, 1067-1077 (2004). https://dx.doi.org/10.1111/j.1365-246X.2004.02377.x   DOI
2 Astafyeva EI, Afraimovich EL, Long-distance traveling ionospheric disturbances caused by the great Sumatra-Andaman earthquake on 26 December 2004, Earth Planets Space 58, 1025-1031 (2006). https://dx.doi.org/10.1186/BF03352607   DOI
3 Astafyeva EI, Heki K, Kiryushkin V, Afraimovich EL, Shalimov S, Two-mode long-distance propagation of coseismic ionosphere disturbances, J. Geophys. Res. 114, A10307 (2009). https://dx.doi.org/10.1029/2008JA013853
4 Davies K, Baker DM, Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964, J. Geophys. Res. 70, 2251-2253 (1965). https://dx.doi.org/10.1029/JZ070i009p02251   DOI
5 Calais E, Minster JB, GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett. 22, 1045-1048 (1995). https://dx.doi.org/10.1029/95GL00168   DOI
6 Chum J, Liu JY, Lastovicka J, Fiser J, Mosna Z, et al., Ionospheric signatures of the April 25, 2015 Nepal earthquake and the relative role of compression and advection for Doppler sounding of infrasound in the ionosphere, Earth Planets Space 68, 24 (2016). https://dx.doi.org/ 10.1186/s40623-016-0401-9   DOI
7 Chung JK, Yoo SM, Lee W, The first measurement of seasonal trends in the equatorial ionospheric anomaly trough at the CHUK GNSS site during the solar maximum in 2014, J. Astron. Space Sci. 33, 287-293 (2016). https://dx.doi.org/10.5140/JASS.2016.33.4.287   DOI
8 Ducic V, Artru J, Lognonne P, Ionospheric remote sensing of the Denali earthquake Rayleigh surface waves, Geophys. Res. Lett. 30, 1951 (2003). https://dx.doi.org/10.1029/2003GL017812
9 Forbes JM, Palo SE, Zhang X, Variability of the ionosphere, J. Atmos. Sol. -Terr. Phys. 62, 685-693 (2000). https://dx.doi.org/10.1016/S1364-6826(00)00029-8   DOI
10 Francis SH, Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere, J. Geophys. Res. 78, 2278-2301 (1973). https://dx.doi.org/10.1029/JA078i013p02278   DOI
11 Lastovicka J, Forcing of the ionosphere by waves from below, J. Atmos. Sol. -Terr. Phys. 68, 479-497 (2006). https://dx.doi.org/10.1016/j.jastp.2005.01.018   DOI
12 Cahyadi MN, Heki K, Ionospheric disturbances of the 2007 Bengkulu and the 2005 Nias earthquakes, Sumatra, observed with a regional GPS network, J. Geophys. Res. 118, 1777-1787 (2013). https://dx.doi.org/10.1002/jgra.50208
13 Francis SH, Global propagation of atmospheric gravity waves: a review, J. Atmos. -Terr. Phys. 37, 1011-1054 (1975). https://dx.doi.org/10.1016/0021-9169(75)90012-4   DOI
14 Hegai VV, Legen'ka AD, Kim VP, Georgieva K, Wave-like perturbations in the ionospheric F2-layer observed after the Ms8.1 Samoa earthquake of September 29, 2009, Adv. Space Res. 47, 1979-1982 (2011). https://dx.doi.org/10.1016/j.asr.2011.01.011   DOI
15 Kim V, Hagai V, Response of the midlatitude F2 layer to some strong geomagnetic storms during solar minimum as observed at four sites of the globe, J. Astron. Space Sci. 32, 297-304 (2015). https://dx.doi.org/10.5140/JASS.2015.32.4.297   DOI
16 Kim V, Hegai V, On the variability of the ionospheric F2-layer during the quietest days in december 2009, J. Astron. Space Sci. 33, 273-278 (2016). https://dx.doi.org/10.5140/JASS.2016.33.4.273   DOI
17 Leonard RS, Barnes Jr. RA, Observation of ionospheric disturbances following the Alaska earthquake, J. Geophys. Res. 70, 1250-1253 (1965). https://dx.doi.org/10.1029/JZ070i005p01250   DOI
18 Liang J, Wan W, Yuan H, Ducting of acoustic-gravity waves in a nonisothermal atmosphere around a spherical globe, J. Geophys. Res. 103, 11229-11234 (1998). https://dx.doi.org/10.1029/98JD00424   DOI
19 Liu CH, Yeh KC, Excitation of acoustic-gravity waves in an isothermal atmosphere, Tellus 23, 150-163 (1971). https://dx.doi.org/10.1111/j.2153-3490.1971.tb00558.x
20 Liu CH, Klostermeyer J, Excitation of acoustic-gravity waves in realistic thermosphere, J. Atmos. -Terr. Phys. 37, 1099-1108 (1975). https://dx.doi.org/10.1016/0021-9169(75)90155-5   DOI
21 Liu JY, Tsai YB, Chen SW, Lee CP, Chen YC, et al., Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004, Geophys. Res. Lett. 33, L02103 (2006). https://dx.doi.org/10.1029/2005GL023963
22 Ma JZG, Atmospheric layers in response to the propagation of gravity waves under nonisothermal, wind-shear, and dissipative conditions, J. Mar. Sci. Eng. 4, 25 (2016). https://dx.doi.org/10.3390/jmse4010025   DOI
23 Maruyama T, Yusupov K, Akchurin A, Ionosonde tracking of infrasound wavefronts in the thermosphere launched by seismic waves after the 2010 M8.8 Chile earthquake, J. Geophys. Res. 121, 2683-2692 (2016b). https://dx.doi.org/10.1002/2015JA022260
24 Maeda S, Numerical solutions of the coupled equations for acoustic-gravity waves in the upper thermosphere, J. Atmos. -Terr. Phys. 47, 965-972 (1985). https://dx.doi.org/10.1016/0021-9169(85)90074-1   DOI
25 Maruyama T, Tsugawa T, Kato H, Ishii M, Nishioka M, Rayleigh wave signature in ionograms induced by strong earthquakes, J. Geophys. Res. 117 A08306 (2012). https://dx.doi.org/10.1029/2012JA017952.
26 Maruyama T, Yusupov K, Akchurin A, Interpretation of deformed ionograms induced by vertical ground motion of seismic Rayleigh waves and infrasound in the thermosphere, Ann. Geophys. 34, 271-278 (2016a). https://dx.doi.org/10.5194/angeo-34-271-2016   DOI
27 Mayr HG, Harris I, Varosi F, Herrero FA, Global excitation of wave phenomena in a dissipative multiconstituent medium: 1. Transfer function of the earth's thermosphere, J. Geophys. Res. 89, 10929-10959 (1984). https://dx.doi.org/10.1029/JA089iA12p10929   DOI
28 Rishbeth H, Mendillo M, Patterns of F2-layer variability, J. Atmos. Sol. -Terr. Phys. 63, 1661-1680 (2001). https://dx.doi.org/10.1016/S1364-6826(01)00036-0   DOI
29 Rolland LM, Lognonne P, Munekane H, Detection and modeling of Rayleigh wave induced patterns in the ionosphere, J. Geophys. Res. 116 A05320 (2011). https://dx.doi.org/10.1029/2010JA016060
30 Row RV, Evidence of long-period acoustic-gravity waves launched into the F region by the Alaskan earthquake of March 28, 1964, J. Geophys. Res. 71, 343-345 (1966). https://dx.doi.org/10.1029/JZ071i001p00343   DOI
31 Tsugawa T, Saito A, Otsuka Y, Nishioka M, Maruyama T, et al., Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku earthquake, Earth Planets Space 63, 66 (2011). https://dx.doi.org/10.5047/eps.2011.06.035
32 Row RV, Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake, J. Geophys. Res. 72, 1599-1610, (1967). https://dx.doi.org/10.1029/JZ072i005p01599   DOI
33 Sun L, Wan W, Ding F, Mao T, Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model, Ann. Geophys. 25, 1979-1986 (2007). https://dx.doi.org/10.5194/angeo-25-1979-2007   DOI
34 Tanaka T, Ichinose T, Okuzawa T, Shibata T, Sato Y, et al., HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atmos. -Terr. Phys. 46, 233-245 (1984). https://dx.doi.org/10.1016/0021-9169(84)90150-8   DOI
35 Yeh KC, Liu CH, Acoustic-gravity waves in the upper atmosphere, Rev. Geophys. 12, 193-216 (1974). https://dx.doi.org/10.1029/RG012i002p00193   DOI
36 Yuen PC, Weaver PF, Suzuki RK, Furumoto AS, Continuous traveling coupling between seismic waves and the ionosphere evident in May 1968 Japan earthquake data, J. Geophys. Res. 74, 2256-2264 (1969). https://dx.doi.org/10.1029/JA074i009p02256   DOI