• Title/Summary/Keyword: ionomer

Search Result 472, Processing Time 0.024 seconds

Gas diffusion electrode containing sulfonated poly(ether sulfone) as ionomer for polymer electrolyte fuel cells (Sulfonated poly(ether sulfone)을 함유한 고분자 전해질 연료전지용 기체 확산 전극에 관한 연구)

  • Ryu, Sung Kwan;Choi, Young Woo;Yang, Tae Hyun;Yim, Sung Dae;Kim, Han Sung;Kim, Chang Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • Polymer electrolyte fuel cells (PEFCs) have received a lot of attention as a power source for both stationary and mobile applications due to their attractive feature. In general, the performance of PEFCs is highly affected by the property of the electrodes. A PEFC electrode essentially consists of a gas diffusion layer and a catalyst layer. The gas difusion layer is highly porous and hydrophobicized with PTFE polymer. The catalyst layer usually contains electrocatalyst, proton conducting polymer, even PTFE as additive. Particularly, the proton conducting ionomer helps to increase the catalytic activity at three-phase boundary and catalyst utilization. Futhermore, it helps to retain moisture, resulting in preventing the electrodes from membrane dehydration. The most widely used proton conducting ionomer is perfluorinated sulfonic acid polymer, namely, Nafion from DuPont due to its high proton conductivity and good mechanical property. However, there are great demands for alternative ionomers based on non-fluorinated materials in terms of high temperature availability, environmental adaptability and production cost. In this study, the electrodes with the various content of the sulfonated poly(ether sulfone) ionomer in the catalyst layer were prepared. In addition, we evaluated electrochemical properties of the prepared electrodes containing the various amount of the ionomers by using the cyclic voltammetry and impedance spectroscopy to find an optimal ionomer composition in the catalyst layer.

  • PDF

Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells (고분자 분쇄 기술을 활용한 고체 알칼리연료전지용 이오노머 바인더 용액 개발)

  • Shin, Mun-Sik;Kim, Do-Hyeong;Kang, Moon-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • In this study, an anion-exchange ionomer solution was prepared by grinding poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in liquid nitrogen for solid alkaline fuel cells (SAFCs). Type of quaternized PPO (QPPO) solutions was controlled by grinding time. The ionomer binder solutions were characterized in terms of dispersity, particle size, and electrochemical properties. As a result, ionomer binder solutions using grinded polymer showed higher dispersion and smaller particle size distribution than that using non-grinded polymer. The highest ionic conductivity and IEC of the membrane recast by using BPPO-G120s were $0.025S\;cm^{-1}$ and $1.26meq\;g^{-1}$, respectively.

A SCANNING ELECTRON MICROSCOPIC STUDY ON THE CHANCES OF REPARATIVE DENTIN FORMATION BY THE GLASS IONOMER CEMENT IN CATS (Glass Ionomer시멘트에 의한 상아질구조변화에 관한 주사전자현미경적 연구)

  • Park, S.K.;Woo, Y.H.;Choi, D.K.;Choi, B.B.;Park, N.S.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.227-242
    • /
    • 1987
  • This study was designed to investigate the pulpal effects of the glass ionomer cement. (Lining cement, G-C Co. Japan) For this purpose, 10 cats were selected, and Class V cavities were prepared on canines of the cats. One experimental group was filled with glass ionomer cement and the other group was filled with zinc phosphate cement . (G-C Co, Japan) The animals of the experimental and control group were sacrificed at 1,2,3,4,6, weeks after the experiment. For comparison of reparative dentin formation pattern in direction of the pulpal and fractured lateral surface, each of them was observed with scanning electron microscope. The findings led to the following conclusions; 1. Reparative dentin of the glass ionomer cement and zinc phosphate cement filling groups were formed on the internal surface of dentin as the shape of hemispherical and spherical with a rough surface. 2. Some of reparative dentin of the glass ionomer cement filling group was started to form at 1 week after experiment, and at 6 weeks after experiment, it had been increased gradually in number and size. 3. Reparative dentin of zinc phosphate cement filling group was formed vigorously, however, gradually was decreased in number and size, and disappeared at 6 weeks after experiment. 4. During the formation of reparative dentin, peritubular dentins were indistinguishable. 5. The diameter of dentinal tubules of reparative dentin has been decreased, during the reparative dentin formed, and it became very irregularly at 6 weeks after experiment.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM (아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF

A BIOLOGICAL EVALUATION OF HIGH COPPER AMALGAM AND GLASS IONOMER-SILVER CEMENT (고동아말감과 Glass ionomer-silver cement의 생물학적 평가에 관한 연구)

  • Oh, Boeng-Won;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.1-16
    • /
    • 1990
  • This study was to evaluate the cytotoxic effect in vitro and the tissue response within the rat peritoneal cavity to high copper amalgam and glass ionomer-silver cement, suggested for use as a retrograde endodontic filling material. In the cytotoxicity experiment, the radioactively ($^{51}Cr$) labeled L929 mouse fibroblasts were employed to determine the relative cytotoxicity of two experimental materials. Those materials were evaluated immediately after set and after one and seven days setting. In the tissue response experiment, two experimental materials were to evaluate mean peritoneal cellular count, differential cell count and the content of silver and copper in pooled packed cells and eluate samples taken by peritoneal lavage technique, and compared with surgical control after one day. two, four and six weeks of implantation. The results were as following: 1. High copper amalgam exhibited significant cytotoxicity immediately after set but showed no sign of toxicity after one day and seven days setting materials. 2. Glass ionomer-silver cement showed no sign of toxicity immediately after set and after one day and seven days setting. 3. High copper amalgam and glass ionomer-silver cement groups produce no significant difference in the mean peritoneal cell count when compared with the surgical control group after one day, two and four weeks of implantation. Surgical control group exhibited significantly a greater cell count when compared with the High copper amalgam group after six weeks. 4. High copper amalgam group increased significantly in the percentage macrophages after four and six weeks of implantation when compared with surgical control group. 5. The trace metal analysis involved an increased silver content in the elutes and an increased copper content in the packed cells of high copper amalgam group, and an increased silver content in the packed cells and elutes of glass ionomer-silver cement group.

  • PDF

Effects of the Variables in the Fabrication of Anode on the Performance of DMFC (직접 메탄올 연료전지용 산화극 제조 변수가 성능에 미치는 영향)

  • Kim, Joon-Hee;Ha, Heung-Yong;Oh, In-Hwan;Hong, Seong-Ahn;Lee, Ho-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.18-22
    • /
    • 2003
  • Single cell performance has been investigated and characterized with variables in the fabrication of DMFC anode. The performance was checked as a function of ionomer content which affects ion conductivity in the catalyst layer, and catalyst slurry solvent which determines structure of agglomerates consisting of an ionomer and a catalyst. Anode with total ionomer to catalyst ratio of 0.6 showed the best performance and the lowest polarization resistance. Also, electrochemically effective surface area increased with ionomer content. As solubility of the ionomer decreases with decreasing solvent polarity, the size of agglomerates consisting of a catalyst and an ionomer became larger in the less polar solvent. The anode using DPK $(\varepsilon=12.60)$ as a solvent, which is less polar than generally-used water or alcohol species, showed the maximum performance and the lowest polarization resistance.

MARGINAL ADAPTATION OF COMPOSITE RESIN USING GLASS IONOMER CEMENT BASES (Glass ionomer cement를 이장한 Composite resin의 변연 적합성에 관한 연구)

  • Han, Seung-Weon
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.2
    • /
    • pp.5-19
    • /
    • 1989
  • The purpose of this study was to observe the microleakage of composite resin filling using several glass ionomer cements. The Class V cavities of eighty noncarious human molars were prepared at the cementoenamel juction on the facial and lingual surfaces of each tooth with a No.330 carbide bur in a high speed handpiece. The cavity dimensions were $3.0{\pm}0.5mm$ wide, $2.0{\pm}0.5mm$ high, and $1.5{\pm}0.5mm$ deep and all enamel cavosurface margins were beveled with a No.558 carbide bur in low speed handpiece. The bevel was approximately $45^{\circ}$ and 0.5-1.0mm in width. A total of the 160 cavities was divided into four groups, and then 144 cavities among them were three experimental groups and remaining sixteen cavities were control group. All of the prepared cavities were restored as follows: group 1 : Preparations were restored with there three glass ionomer cements. group 2 : Preparations were restored with a composite resin with three glass ionomer cement bases placed $0.2{\pm}0.1mm$ short of the cavosurface margin. group 3 : Preparations were restored with a composite resin with three glass ionomer cement bases extened to the cavosurface margin. group 4 : As control group, preparations were restored with a composite resin, PALFIQUE. The specimens were then thermocycled in a range of $6^{\circ}C-60^{\circ}C$ and immersed in a bath of 2.0% aqueous basic fuchsin solution for 24 hours. Dye penetration was read on a scale of 0 to 4 by Tani and Buonocore's method. The following conclusions were derived from the results obtained; 1. All groups showed significantly more leakage at the gingival margins than at the occlusal margins(p<0.0005). 2. At the gingival margins, group 1 showed less leakage than group 3(p<0.01) and group 4(p<0.0005), while group 3 exhibited less leakage than group 2(p<0.01) and group 4(p<0.0005). 3. At the occlusal margins, group 4 showed less leakage than group 3(p<0.1) and group 1(p<0.005), while group 3 exhibited less leakage than group 2(p>0.1) and group 1(p<0.025).

  • PDF

Comparison of effect of desensitizing agents on the retention of crowns cemented with luting agents: an in vitro study

  • Jalandar, Sonune Shital;Pandharinath, Dange Shankar;Arun, Khalikar;Smita, Vaidya
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.127-133
    • /
    • 2012
  • PURPOSE. Many dentists use desensitizing agents to prevent hypersensitivity. This study compared and evaluated the effect of two desensitizing agents on the retention of cast crowns when cemented with various luting agents. MATERIALS AND METHODS. Ninety freshly extracted human molars were prepared with flat occlusal surface, 6 degree taper and approximately 4 mm axial length. The prepared specimens were divided into 3 groups and each group is further divided into 3 subgroups. Desensitizing agents used were GC Tooth Mousse and $GLUMA^{(R)}$ desensitizer. Cementing agents used were zinc phosphate, glass ionomer and resin modified glass ionomer cement. Individual crowns with loop were made from base metal alloy. Desensitizing agents were applied before cementation of crowns except for control group. Under tensional force the crowns were removed using an automated universal testing machine. Statistical analysis included one-way ANOVA followed by Turkey-Kramer post hoc test at a preset alpha of 0.05. RESULTS. Resin modified glass ionomer cement exhibited the highest retentive strength and all dentin treatments resulted in significantly different retentive values (In Kg.): GLUMA ($49.02{\pm}3.32$) > Control ($48.61{\pm}3.54$) > Tooth mousse ($48.34{\pm}2.94$). Retentive strength for glass ionomer cement were GLUMA ($41.14{\pm}2.42$) > Tooth mousse ($40.32{\pm}3.89$) > Control ($39.09{\pm}2.80$). For zinc phosphate cement the retentive strength were lowest GLUMA ($27.92{\pm}3.20$) > Control ($27.69{\pm}3.39$) > Tooth mousse ($25.27{\pm}4.60$). CONCLUSION. The use of $GLUMA^{(R)}$ desensitizer has no effect on crown retention. GC Tooth Mousse does not affect the retentive ability of glass ionomer and resin modified glass ionomer cement, but it decreases the retentive ability of zinc phosphate cement.

AN EXPERIMENTAL STUDY ON THE CHANGES OF FLEXURAL STRENGTH OF GLASS IONOMER CEMENT FOLLOWING SURFACE TREATMENT (시간경과 및 표면처리에 따른 Glass ionomer cement의 flexual strength의 변화에 관한 실험적 연구)

  • Kim, Byung-Wooh;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.120-128
    • /
    • 1990
  • The purpose of this study was to examine the effect of surface treatment on the flexural strength of glass ionomer cement with time elapsed. Glass ionomer cement (Fuji ionomer type II, (GC Co.) was used as experimental materials. Glass ionomer cement was placed in a beam-shaped teflon mold (3mm ${\times}$ 3mm ${\times}$ 25mm) that was rest on a glass plate. Another flat glass was placed on the top of the mold with pressure. After the cement was set, the specimens were divided into three groups and thirty two specimens in each group were surface-treated as follows: No treatment group: Specimens were no surface-treated and stored at $35.6^{\circ}C$ in distilled water. Fuji varnish application (FA) group: Specimens were surface-treated with Fuji varnish (GC Co.) and stored at $35.6^{\circ}C$ in distilled water. Vaseline storage (VS) group: Specimens were no surface-treated and stored at $35.6^{\circ}C$ in vaseline. The flexural strength was measured after I day, 1 week, 2 weeks, 4 weeks from the start of mixing using Instron Universal Testing Instruments. Results were as follows: 1. After 4 weeks, vaseline storage group exhibited the maximum flexural strength (p <0.0005). 2. The flexural strengths in no treatment group were slightly increased with time elapsed, but its difference was not significant, statistically. 3. The flexural strengths in Fuji varnish application group were increased with time elapsed (p <0.05). 4. The flexural strengths in Fuji varnish application group and vaseline storage group were greater than that in no treatment group (p <0.0005).

  • PDF

Molecular Dynamics Study of Anion Conducting Ionomer under Excessive Water Condition (과량의 수화상태에서 음이온 전도성 이오노머의 분자동역학 전산모사 연구)

  • Hoseong, Kang;So Young, Lee;Hyoung-Juhn, Kim;Chang Hyun, Lee;Chi Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.475-485
    • /
    • 2022
  • The continuous excessive consumption of fossil fuels is causing global warming, climate, and environmental crisis. Accordingly, hydrogen energy attracts attention among alternative energies of fossil fuels, because it has the advantage of not emitting pollutants and not having resource restrictions. Therefore, various studies are being conducted on a water electrolysis system for producing hydrogen and a fuel cell system for producing electricity by using hydrogen energy as a fuel. In this study, 3D ionomer models were produced by reflecting the excessive water condition of an anion-conductive ionomer material, which is one of the core materials of water electrolysis systems and fuel cells. Finally, by analyzing the structural stability and performance of the ionomer under an excessively hydrated condition, we suggested a performance improvement factor in the design of an anion conductive ionomer, a key material for water electrolysis systems and fuel cells.