• Title/Summary/Keyword: ionic salt

Search Result 219, Processing Time 0.025 seconds

Restoration of Membrane Performance for Damaged Reverse Osmosis Membranes through in-situ Healing (손상된 역삼투막의 in-situ 힐링을 통한 막 성능 복원)

  • Yun, Won Seob;Rhim, Ji Won;Cho, Young Ju
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.96-104
    • /
    • 2019
  • The purpose of this paper is whether or not the in-situ restoration of the reverse osmosis (RO) membranes which its membrane function is lost is possible. The damaged RO membranes are double coated through the salting-out method by the poly(styrene sulfonic acid) sodium salt as the cationic exchange polymer and the polyethyleneimine as the anionic exchange polymer and also conducted the opposite order of the coating materials. And according to the concentration, time and ionic strength, the flux and rejection are measured for the coated membranes. Then the best coating condition is to apply for the RO membrane module of the household water purifier to know the possibility of the in-situ restoration for the commercial module. When the condition of the PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) is applied, the rejection was enhance from 69% for the damaged module to 86% (90% for the pristine module).

Nitric oxide-Releasing Chitosan Nanoparticles; A Potential Impeding Strategy Against Salinity Stress in Arabidopsis thaliana

  • Waqas Rahim;Anjali Pande;Nusrat Jahan Methela;Da-Sol Lee;Bong-Gyu Mun;Hak-Yoon Kim;Byung-Wook Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.157-157
    • /
    • 2022
  • Plants being sessile are prone to various abiotic challenges, including salinity. Plants generally cope with salt stress by regulating their endogenous NO levels. NO exogenously applied in various forms also successfully impedes the salt stress, but its small size, short half life, and high volatility rate hamper its application in agriculture. NO application via CS as a nanocarrier is an alternate option to ensure the optimal kinetic release of NO for a long period compared to the free NO form. Herein, we synthesized and characterized GSNO-CS NP by ionic gelation of TPP with CS and then reacting with GSH, followed by reaction with NaNO2 suspension. The synthesized NPs were characterized using non-destructive analytical techniques such as DLS, FTIR, and SEM to ensure their synthesis and surface morphology. NO-release profile confirmed optimal kinetic NO release for 24 h from NO-CS NP as compared to free NO form. The efficiency of NO-CS NP was checked on Arabidopsis plants under salinity stress by gauging the morphological, physiological, and enzymatic antioxidant system and SOS pathway gene expression levels. Overall, the results revealed that NO-CS NP successfully mitigates salinity stress compared to free GSNO. Concluding, the findings provide sufficient experimental evidence for the application of nanotechnology to enhance NO delivery, thus inducing more benefits for the plants under stress conditions by mitigating the deleterious impacts of salt stress on the morphological and physiological status of the plants, and regulating the ions exchange by overexpression of SOS pathway candidate genes.

  • PDF

Study on Characteristics of PM2.5 and Its Ionic Constituents in Chuncheon, Korea (춘천시 PM2.5의 질량농도 및 이온성분 농도의 특성에 관한 연구)

  • Jung, Jin-Hee;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.682-692
    • /
    • 2008
  • Fine particles ($PM_{2.5}$) were collected and analyzed from November 2005 through August 2007 in Chuncheon, Korea to investigate the characteristics of $PM_{2.5}$ and its ionic constituents. The average $PM_{2.5}$ concentration during the study period was $39{\mu}g/m^3$, which is almost two times higher than the annual US NAAQS $PM_{2.5}$ standard of $15{\mu}g/m^3$. $PM_{2.5}$ concentrations were higher in spring and winter than in summer and fall. During spring, Asian Dust events dramatically enhanced $PM_{2.5}$ concentrations, and long-range transport of $PM_{2.5}$ emitted in industrial area of China often occurred during winter based on trajectory analysis. Contribution of $PM_{2.5}$ to $PM_{10}$ concentrations ranged from $72{\mu}g/m^3$ during Asian Dust events to $457{\mu}g/m^3$, indicating that a large portion of $PM_{2.5{\sim}10}$ was transported from China during Asian Dust events. Among the major ionic constituents ${SO_4}^{2-}$ showed the highest concentration, followed by ${NH_4}^+$, ${NO_3}^-$ and ${NO_2}^-$. Chuncheon appeared to be ${NH_4}^+$ rich environment, indicating that $(NH_4)_{2}SO_4$ and ${NH_4}{NO_3}$ were the predominant forms of ${NO_3}^-$ and ${SO_4}^2$ in $PM_{2.5}$. Haze has frequently occurred in Chuncheon since So-Yang dam was constructed in 1973. Haze events were observed on 23 days during sampling period, and the average $PM_{2.5}$ concentration was approximately 1.6 times higher during haze events than during non-haze events. This result suggests that haze enhances the secondary aerosol formation because the aerosol spontaneously absorbs water to form a saturated salt solution, deriving a significant increase in the mass of the particle.

Extraction of β-glucosidase from Bagasse Fermented by Mixed Culture under Solid State Fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • Various parameters such as solvent selection, concentration, solid/liquid ratio, soaking time, temperature, stationary, shaking conditions, and repeated extractions were investigated in order to determine the optimum extraction conditions of ${\beta}$-glucosidase from bagasse fermented by mixed culture of Aspergillus niger NRC 7A and Aspergillus oryzae NRRL 447. Among various solvents tested, non ionic detergents gave the best results than the inorganic or organic salt solutions and distilled water. The optimum conditions for extraction of ${\beta}$-glucosidase were 30 min soaking time at $40^{\circ}C$ under shaking condition at 150 rpm, with solid/liquid ratio 1:15 (w/v), which yielded $2882.74{\pm}95.52U/g$ fermented culture (g fc) of enzyme activity. With repeated washes under the above optimum conditions, the results showed that enzyme extracted in the $1^{st}$ and $2^{nd}$ washes represents about 90% of the total activity.

Osmotic Cross Second Virial Coefficient ($B_{23}$) of Unfavorable Proteins: Modified Lennard-Jones Potential

  • Choi, Sang-Ha;Bae, Young-Chan
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.763-769
    • /
    • 2009
  • A chromatographic method is used to measure interactions between dissimilar proteins in aqueous electrolyte solutions as a function of ionic strength, salt type, and pH. One protein is immobilized on the surface of the stationary phase, and the other is dissolved in electrolyte solution conditions flowing over that surface. The relative retention of proteins reflects the mean interactions between immobile and mobile proteins. The osmotic cross second virial coefficient calculated by assuming a proposed potential function shows that the interactions of unfavorable proteins depend on solution conditions, and the proposed model shows good agreement with the experimental data of the given systems.

Solvent Effect on Restriction Endonuclease : Alteration of Specificity of Restriction Endonuclease PvuII in Hydrophobic Solution (제한효소에 대한 용매의 영향 :소수성 용매에 의한 PvuII 특이성 변화)

  • 김희정;이강민
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.63-71
    • /
    • 1994
  • During the last decade enzyme reaction in organic solvent has been studied to show that specificity in buffer is different from that in organic solvent. The specificity of restriction enzyme was effected by various factors such as ionic strength, salt organic solvent and temperature. In this study, restriction enzyme PvuII which is used most frequently in genetic engineering and the substrate was vector pGEM3 whose sequence was already known were used. As a result the recognition sequence site was changed in the presence of organic solvents whose Log P are -1.5∼0. Their specificities were contrast with activities were contrasted. Specificities were not changed in organic solvent easily in inactivating enzyme. We think that the enzyme recognition site was not changed randomly but by preferential order. A recombinant vector which does not contain typical cleavage site CAG↓CTG was cleaved in 20% ethanol solution. This result might show that restriction enzyme could be used to cleave at unusual sites by changing the reaction conditions.

  • PDF

Characterization of a Cross-linked Polymer Electrolyte Prepared from Oligo(ethylene glycol) methacrylates-Acrylonitrile

  • Lee, Chang-Ryoul;Hyun, Seok-Hee;Lee, Suk-Kee;Kim, Woo-Sik;Moon, Seong-In;Jin, Bong-Soo
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.292-295
    • /
    • 2001
  • A cross-linked solid polymer electrolyte was prepared by copolymerizing photochemically acrylonitrile (AN), oligo(ethylene glycol ethyl ether) methacrylate, oligo(ethylene glycol) dimethacrylate in the presence of lithium perchlorate as a lithium salt, ethylene carbonate-propylene carbonate as a mixed plasticizer, and poly(ethylene oxide) as a polymer matrix. The maximum ionic conductivity of the polymer electrolyte was 2.35$\times$10$\^$-3/ S/cm. The interface resistance of the polymer electrolyte was very low compared to that of the polymer electrolyte without AN. The former electrolyte was stable up to 4.3 V and the Ah efficiency was nearly 100% during the charge-discharge cycle.

  • PDF

Calculations of Solubility Preduct Constants for Metal Oxides in the KCI-LiCl Eutectic Composition by Exact Thermodynamic Cycle (KCl-LiCl 공정 용융염욕에서 열역학적 싸이클법에 의한 금속산화물의 용해도적 계산)

  • 백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.4
    • /
    • pp.225-229
    • /
    • 1990
  • Solubility Products of metal oxides, such as Al2O3 and UO2 in KCl-LiCl eutectic composition was calculated by using an exact an exact thermodynamic. The values for Al2O3 ThO2 and UO2 were found to be 2.51$\times$10-27, 4.97$\times$10-15and 2.17$\times$10-12in mole per liter basis at 743 K, respectively. The correlation of theoretical values with those of experiment were in good agreement. It is worth to note that the exact cycle method was proved to be satisfactory in making predictions of solubillities and also solubility products of sparingly soluble metal oxides in an ionic salt system.

  • PDF

Acid-Base Equilibria and Related Properites of Chitosan

  • Joon-Woo Park;Kyung-Hee Choi;Kwang-hee Koh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.2
    • /
    • pp.68-72
    • /
    • 1983
  • The $pK_{a}$ of $-NH_{3}^{+}$ group of chitosan in water was 6.2, while that of D-glucosamine-HCl, monomer of chitosan, was found to be 7.8. The difference of $pK_{a}$ values between chitosan and D-glucosamine was attributed to the strong electrostatic interaction between $-NH_{3}^{+}$ groups in chitosan. The apparent binding constant of $Cu^{2+}$ to D-glucosamine was estimated to be $1{\times}10^{4}$. For chitosan, no significant binding of $Cu^{2+}$ to the polymer was observed when pH < 5, but strong cooperative binding was observed near pH 5.1. The mechanism of such cooperativity was proposcd. Chitosan in solution exhibited typical polyelectrolytic behaviors: viscosity increases with increased amount of charged group, and decreases with addition of salt. The concentration dependence of viscosity was measured, and the Huggins parameters and intrinsic viscosity were calculated at various ionic strength. The results were interpreted in terms of molecular properties of the chitosan molecule.

Synthesis and Applications of Dicationic Iodide Materials for Dye-Sensitized Solar Cells

  • Nam, Heejin;Ko, Yohan;Kunnan, Sakeerali C.;Choi, Nam-Soon;Jun, Yongseok
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.214-222
    • /
    • 2019
  • Dye-sensitized solar cells (DSSCs) have been receiving growing attentions as a potential alternative to order photovoltaic devices due to their high efficiency and low manufacturing cost. DSSCs are composed of a photosensitizing dye adsorbed on a mesoporous film of nanocrystalline $TiO_2$ as a photoelectrode, an electrolyte containing triiodide/iodide redox couple, and a platinized counter electrode. To improve photovoltaic properties of DSSCs, new dicationic salts based on ionic liquids were synthesized. Quite comparable efficiencies were obtained from electrolytes with new dicationic iodide salts. The best cell performance of 7.96% was obtained with dicationic salt of PBDMIDI.