Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.2.214

Synthesis and Applications of Dicationic Iodide Materials for Dye-Sensitized Solar Cells  

Nam, Heejin (Interdisciplinary School of Green Energy, UNIST)
Ko, Yohan (Department of Materials Chemistry and Engineering Konkuk University)
Kunnan, Sakeerali C. (Department of Materials Chemistry and Engineering Konkuk University)
Choi, Nam-Soon (Interdisciplinary School of Green Energy, UNIST)
Jun, Yongseok (Department of Materials Chemistry and Engineering Konkuk University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.2, 2019 , pp. 214-222 More about this Journal
Abstract
Dye-sensitized solar cells (DSSCs) have been receiving growing attentions as a potential alternative to order photovoltaic devices due to their high efficiency and low manufacturing cost. DSSCs are composed of a photosensitizing dye adsorbed on a mesoporous film of nanocrystalline $TiO_2$ as a photoelectrode, an electrolyte containing triiodide/iodide redox couple, and a platinized counter electrode. To improve photovoltaic properties of DSSCs, new dicationic salts based on ionic liquids were synthesized. Quite comparable efficiencies were obtained from electrolytes with new dicationic iodide salts. The best cell performance of 7.96% was obtained with dicationic salt of PBDMIDI.
Keywords
Dye-Sensitized Solar Cells; Dicationic Salts;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Jun, J. H. Park, and M. G. Kang, Chem. Commun., 2012, 48(52), 6456-6471.   DOI
2 C. L. Jung, J. Lim, J. H. Park, C. H. Han, and Y. Jun, RSC Adv., 2014, 4, 243-247.   DOI
3 A. K. Arof, I. M. Noor, M. H. Buraidah, I. Albinsson, B. E. Mellander, Electrochim. Acta, 2017, 251, 223-234.   DOI
4 Wang, X. & Stanbury, and D. M. Inorg. Chem., 2006, 45(8), 3415-3423.   DOI
5 M. Wang, N. Chamberland, L. Breau, J. Moser, R. Humphry-Baker, B. Marsan, S. M. Zakeeruddin, M. Gratzel, Nat. Chem. 2010, 2(5), 385-389.   DOI
6 N. Jeon, S. G. Jo, S. H. Kim, M. S. Park, D. W. Kim, J. Electrochem. Sci. Technol., 2017, 8(3), 257-264.   DOI
7 K. Zouhri, Renewable Energy, 2018, 126, 210-225.   DOI
8 H. Kusama, J. Photochem. Photobiol. A: Chem., 2018, 357, 60-71.   DOI
9 I. Sagaigak, G. Huertas, A. Nguyen Van Nhien, F. Sauvage, Green Chem., 2018, 20(5), 1059-1064.   DOI
10 S. Jeon, Y. Jo, K.J. Kim, Y. Jun, and C.H. Han, ACS Appl. Mater. Interfaces, 2011, 3(2), 512-516.   DOI
11 C. L. Jung, Han, C. H., D. K. Moon, and Y. Jun, Chemsuschem, 2014, 7(10), 2839-2844.   DOI
12 R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochimica Acta, 2002, 47(26), 4213-4225.   DOI
13 C. Zafer, K. Ocakoglu, C. Ozsoy, and S. Icli, Electrochimica Acta, 2009, 54(24), 5709-5714.   DOI
14 R. P. Seward, and E. C. Vieira, J. Phys. Chem., 1958, 62(1), 127-128.   DOI
15 A. Chagnes, H. Allouchi, B. Carre, G. Odou, P. Willmann, and D. Lemordant, J. Appl. Electrochem., 2003, 33(7), 589-595.   DOI
16 A. Chagnes, B. Carre, P. Willmann, R. Dedryvere, D. Gonbeau, and D. Lemordant, J. Electrochem.Soc., 2003, 150(9), A1255-A1261.   DOI