Browse > Article

Osmotic Cross Second Virial Coefficient ($B_{23}$) of Unfavorable Proteins: Modified Lennard-Jones Potential  

Choi, Sang-Ha (Division of Chemical Engineering and Molecular Thermodynamics Lab., Hanyang University)
Bae, Young-Chan (Division of Chemical Engineering and Molecular Thermodynamics Lab., Hanyang University)
Publication Information
Macromolecular Research / v.17, no.10, 2009 , pp. 763-769 More about this Journal
Abstract
A chromatographic method is used to measure interactions between dissimilar proteins in aqueous electrolyte solutions as a function of ionic strength, salt type, and pH. One protein is immobilized on the surface of the stationary phase, and the other is dissolved in electrolyte solution conditions flowing over that surface. The relative retention of proteins reflects the mean interactions between immobile and mobile proteins. The osmotic cross second virial coefficient calculated by assuming a proposed potential function shows that the interactions of unfavorable proteins depend on solution conditions, and the proposed model shows good agreement with the experimental data of the given systems.
Keywords
chromatography; pair potential function; osmotic cross second virial coefficient; MLJ potential;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 C. A. Haynes, K. Tamura, H. R. Körfer, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem., 96, 905 (1992)   DOI
2 G. D. Phillies, J. Chem. Phys., 60, 2721 (1974)   DOI
3 C. A. Teske, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem. B, 108, 7437 (2004)   DOI   ScienceOn
4 J. Largo and J. R. Solana, Phys. A, 284, 68 (2000)   DOI   ScienceOn
5 S. G. Kim and Y. C. Bae, Macromol. Res., 10, 67 (2003)
6 P. M. Tessier, A. M. Lenhoff, and S. I. Sandler, Biophis. J., 82, 1620 (2002)   DOI   ScienceOn
7 J. J. Nicolas, K. E. Gubbins, W. B. Streett, and D. J. Tidesley, Mol. Phys., 37, 1429 (1979)   DOI   ScienceOn
8 Y. U. Moon, C. O. Anderson, H. W. Blanch, and J. M. Prausnitz, Fluid Phase Equilib., 168, 229 (2000)   DOI   ScienceOn
9 P. M. Tessier, H. R. Johnson, R. Pazhianur, B. W. Berger, J. L. Prentice, B. J. Bahnson, S. I. Sandler, and A. M. Lenhoff Proteins: Struct., Funct; Genet., 50, 303 (2003)   DOI   ScienceOn
10 D. E. Kuehner, J. M. Prausnitz, F. Fergg, M. Wernick, H. W. Blanch, and J. Engmann, J. Phys. Chem. B, 103, 1368 (1999)   DOI   ScienceOn
11 R. A. Curtis, J. M. Prausnitz, and H. W. Blanch, Biotechnol. Bioeng., 57, 11 (1998)   DOI   ScienceOn
12 J. Chang and S. I. Sandler, Mol. Phys., 81, 745 (1994)   DOI   ScienceOn
13 P. M. Tessier, S. D. Vandrey, B. W. Berger, R. Pazhianur, S. I. Sandler, and A. M. Lenhoff, Acta Crystallogr. Sect. D: Biol. Crystallogr., 58, 1531 (2002)   DOI   ScienceOn
14 V. L. Vilker, C. K. Colton, and K. A. Smith, J. Colloid Interface Sci., 79, 548 (1981)   DOI   ScienceOn
15 P. L. Domen, J. R. Nevens, A. K. Mallia, G. T. Hermanson, and D. C. Klenk, J. Chromatogr., 510, 293 (1990)   DOI   ScienceOn
16 E. J W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948
17 S. M. Walas, Phase Equilibria in Chemical Engineering, Butterworths, Boston, MA, 1985
18 W. G. McMillan and J. E. Mayer, J. Chem. Phys., 13, 276 (1945)   DOI
19 J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 54, 5237 (1971)   DOI
20 N.Y. Jee and J. J. Kim, Macromol. Res., 14, 654 (2006)   DOI
21 S. Shen and B. C.-Y. Lu, Fluid Phase Equilib., 84, 9 (1993)   DOI   ScienceOn
22 J. A. Barker and D. Henderson, J. Chem. Phys., 47, 4714 (1967)   DOI
23 P. M. Tessier, A. M. Lenhoff, and S. I. Sandler, Biophys. J., 82, 1620 (2002)   DOI   ScienceOn
24 S.Y. Patro and T. M. Przybycien, Biotechnol. Bioeng., 52, 193 (1996)   DOI   ScienceOn