• 제목/요약/키워드: ion-assisted etching

검색결과 60건 처리시간 0.045초

The Development of Cl-Plasma Etching Procedure for Si and SiO$_2$

  • Kim, Jong-Woo;Jung, Mi-Young;Park, Sung-Soo;Boo, Jin-Hyo
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.516-521
    • /
    • 2001
  • Dry etching of Si wafer and $SiO_2$ layers was performed using He/Cl$_2$ mixture plasma by diode-type reactive ion etcher (RIE) system. For Si etching, the Cl molecules react with the Si molecules on the surface and become chemically stable, indicating that the reactants need energetic ion bombardment. During the ion assisted desorption, energetic ions would damage the photoresist (PR) and produce the bad etch Si-profile. Moreover, we have examined the characteristics of the Cl-Si reaction system, and developed the new fabrication procedures with a $Cl_2$/He mixture for Si and $SiO_2$-etching. The developed novel fabrication procedure allows the RIE to be unexpensive and useful a Si deep etching system. Since the etch rate was proved to increase linearly with fHe and the selectivity of Si to $SiO_2$ etch rate was observed to be inversely proportional to fHe.

  • PDF

리튬 배터리 음극용 SiO2 코어 쉘을 갖춘 나노 다공성 실리콘 입자 제조 (Fabrication of Nano Porous Silicon Particle with SiO2 Core Shell for Lithium Battery Anode)

  • 심보림;김은하;임현민;김원진;김우병
    • 한국재료학회지
    • /
    • 제34권7호
    • /
    • pp.370-376
    • /
    • 2024
  • In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.

습식 식각 공정을 이용하여 제작된 광양자테 소자의 특성 분석 (Characterization of photonic quantum ring devices manufactured using wet etching process)

  • 김경보;이종필;김무진
    • 융합정보논문지
    • /
    • 제10권6호
    • /
    • pp.28-34
    • /
    • 2020
  • 본 논문에서는 VCSEL (Vertical Cavity Surface Emitting Laser) 레이저를 만드는 구조와 유사한 GaAs 웨이퍼상에 MOCVD (Metal Organic Chemical Vapor Deposition) 장비로 GaAs와 AlGaAs 에피층을 형성시킨 구조를 사용한다. 3차원 공진현상에 의해 자연 발생되는 광양자테 (PQR: Photonic Quantum Ring) 소자를 건식 식각 방법인 CAIBE (Chemically Assisted Ion Beam Etching) 기술로 제작하였지만, 진공 분위기에서 진행해야 하는 문제점 때문에 저가격으로 쉽게 소자를 제작할 수 있는 방법이 연구되었고, 그 결과 인산, 과산화수소, 메탄올이 혼합된 용액의 습식식각 기술로 가능성을 확인하였으며, 이 방법을 적용하여 소자를 제작한 내용에 대해 논한다. 또한, 제작된 광소자의 스펙트럼을 측정하였고, 이 결과들을 이론적으로 해석하여 얻은 파장값과 비교한다. 광양자테 소자는 3차원 형상으로 세포를 모델링하거나, 디스플레이 분야로의 응용이 가능할 것으로 기대한다.

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF

The Dry Etching Properties of ZnO Thin Film in Cl2/BCl3/Ar Plasma

  • Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권3호
    • /
    • pp.116-119
    • /
    • 2010
  • The etching characteristics of zinc oxide (ZnO) were investigated, including the etch rate and the selectivity of ZnO in a $Cl_2/BCl_3$/Ar plasma. It was found that the ZnO etch rate, the RF power, and the gas pressure showed non-monotonic behaviors with an increasing Cl2 fraction in the $Cl_2/BCl_3$/Ar plasma, a gas mixture of $Cl_2$(3 sccm)/$BCl_3$(16 sccm)/Ar (4 sccm) resulted in a maximum ZnO etch rate of 53 nm/min and a maximum etch selectivity of 0.89 for ZnO/$SiO_2$. We used atomic force microscopy to determine the roughness of the surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas. Due to the relatively low volatility of the by-products formed during etching with $Cl_2/BCl_3$/Ar plasma, ion bombardment and physical sputtering were required to obtain the high ZnO etch rate. The chemical states of the etched surfaces were investigated using X-ray photoelectron spectroscopy (XPS). This data suggested that the ZnO etch mechanism was due to ion enhanced chemical etching.

레이저를 이용한 미세에칭에 관한 연구 (A Study on the Argon Laser Assisted Thermochemical Micro Etching)

  • 박준민;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF

Chemical Reaction on Etched TaNO Thin Film as O2 Content Varies in CF4/Ar Gas Mixing Plasma

  • Woo, Jong Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.74-77
    • /
    • 2017
  • In this work, we investigated the etching characteristics of TaNO thin films and the selectivity of TaNO to $SiO_2$ in an $O_2$/CF4/Ar inductively coupled plasma (ICP) system. The maximum etch rate of TaNO thin film was 297.1 nm/min at a gas mixing ratio of O2/CF4/Ar (6:16:4 sccm). At the same time, the etch rate was measured as a function of the etching parameters, such as the RF power, DC-bias voltage, and process pressure. X-ray photoelectron spectroscopy analysis showed the efficient destruction of the oxide bonds by the ion bombardment, as well as the accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CF_4$-containing plasmas.

Dry Etching Characteristics of ZnO Thin Films for the Optoelectronic Device by Using Inductively Coupled Plasma

  • Joo, Young-Hee;Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.6-9
    • /
    • 2012
  • In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity to $SiO_2$) of ZnO thin films in $N_2/Cl_2$/Ar inductivity coupled plasma. A maximum etch rate and selectivity of 108.8 nm/min and, 3.21, respectively, was obtained for ZnO thin film at a $N_2/Cl_2$/Ar gas mixing ratio of 15:16:4 sccm. The plasmas were characterized by optical emission spectroscopy. The x-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment. An accumulation of low volatile reaction products on the etched surface was also shown. Based on this data, an ion-assisted chemical reaction is proposed as the main etch mechanism for plasmas containing $Cl_2$.

The Use of Inductively Coupled CF4/Ar Plasma to Improve the Etch Rate of ZrO2 Thin Films

  • Kim, Han-Soo;Woo, Jong-Chang;Joo, Young-Hee;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권1호
    • /
    • pp.12-15
    • /
    • 2013
  • In this study, we carried out an investigation of the etching characteristics (etch rate, and selectivity to $SiO_2$) of $ZrO_2$ thin films in a $CF_4$/Ar inductively coupled plasma (ICP) system. The maximum etch rate of 60.8 nm/min for $ZrO_2$ thin films was obtained at a 20 % $CF_4/(CF_4+Ar)$ gas mixing ratio. At the same time, the etch rate was measured as a function of the etching parameter, namely ICP chamber pressure. X-ray photoelectron spectroscopy (XPS) analysis showed efficient destruction of the oxide bonds by the ion bombardment, as well as an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch characteristics for the $CF_4$-containing plasmas.