DOI QR코드

DOI QR Code

The Dry Etching Properties of ZnO Thin Film in Cl2/BCl3/Ar Plasma

  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2010.03.18
  • Accepted : 2010.05.03
  • Published : 2010.06.25

Abstract

The etching characteristics of zinc oxide (ZnO) were investigated, including the etch rate and the selectivity of ZnO in a $Cl_2/BCl_3$/Ar plasma. It was found that the ZnO etch rate, the RF power, and the gas pressure showed non-monotonic behaviors with an increasing Cl2 fraction in the $Cl_2/BCl_3$/Ar plasma, a gas mixture of $Cl_2$(3 sccm)/$BCl_3$(16 sccm)/Ar (4 sccm) resulted in a maximum ZnO etch rate of 53 nm/min and a maximum etch selectivity of 0.89 for ZnO/$SiO_2$. We used atomic force microscopy to determine the roughness of the surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas. Due to the relatively low volatility of the by-products formed during etching with $Cl_2/BCl_3$/Ar plasma, ion bombardment and physical sputtering were required to obtain the high ZnO etch rate. The chemical states of the etched surfaces were investigated using X-ray photoelectron spectroscopy (XPS). This data suggested that the ZnO etch mechanism was due to ion enhanced chemical etching.

Keywords

References

  1. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001) [DOI: 10.1016/S0921-5107(00)00604-8].
  2. T. Aoki, Y. Hatanaka, and D. C. Look, Appl. Phys. Lett. 76, 3257 (2000) [DOI: 10.1063/1.126599].
  3. W. Lim, L. Voss, R. Khanna, B. P. Gila, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Surf. Sci. 253, 889 (2006) [DOI: 10.1016/j.apsusc.2006.01.037].
  4. W. Lim, L. Voss, R. Khanna, B. P. Gila, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Surf. Sci. 253, 1269 (2006) [DOI: 10.1016/j.apsusc.2006.01.081].
  5. W. T. Lim, L. Stafford, J. I. Song, J. S. Park, Y. W. Heo, J. H. Lee, J. J. Kim, and S. J. Pearton, Appl. Surf. Sci. 253, 3773 (2007) [DOI: 10.1016/j.apsusc.2006.07.094].
  6. L. Stafford, J. Margot, M. Chaker, and S. J. Pearton, Appl. Phys. Lett. 87, 071502 (2005) [DOI: 10.1063/1.2031936].
  7. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004) [DOI: 10.1116/1.1714985].
  8. W. T. Lim, I. K. Baek, J. W. Lee, E. S. Lee, M. H. Jeon, G. S. Cho, Y. W. Heo, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 83, 3105 (2003) [DOI: 10.1063/1.1618373].
  9. G. H. Kim, C. I. Kim, and A. M. Efremov, Vacuum 79, 231 (2005) [DOI: 10.1016/j.vacuum.2005.03.012].
  10. E. Meeks, P. Ho, A. Ting, and R. J. Buss, J. Vac. Sci. Technol. A 16, 2227 (1998) [DOI: 10.1116/1.581332].
  11. K. Ichihara and M. Hara, Jpn. J. Appl. Phys. Part 1 36, 4874 (1997) [DOI: 10.1143/JJAP.36.4874].
  12. M. S. P. Andriesse, T. Zijlstra, and E. Van Der Drift, J. Vac. Sci. Technol. B 18, 3462 (2000) [DOI: 10.1116/1.1313577].

Cited by

  1. High-Mobility InGaZnO TFTs Using Atmospheric Pressure Plasma Jet Technique and 248-nm Excimer Laser Annealing vol.35, pp.10, 2014, https://doi.org/10.1109/LED.2014.2346774
  2. Challenges in fabrication and testing of piezoelectric MEMS with a particular focus on energy harvesters vol.19, pp.8, 2013, https://doi.org/10.1007/s00542-012-1721-8
  3. A Study of the Etched ZnO Thin Films Surface by Reactive Ion in the Cl2/BCl3/Ar Plasma vol.23, pp.10, 2010, https://doi.org/10.4313/JKEM.2010.23.10.747