• 제목/요약/키워드: ion wind

검색결과 93건 처리시간 0.029초

중소도시 토지이용유형별 이온지수 특성 - 충주시를 대상으로 - (Characteristics of Ion Index by Type of Land Use in Small City - Focused on Chungju)

  • 김정호;이상훈;윤용한
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.489-497
    • /
    • 2018
  • In this study, the ion index characteristics of small and medium urban land use types were investigated in the city of Chungju. The average temperature for each land use type was in the order: general commercial district ($29.59^{\circ}C$) > general residential district ($28.34^{\circ}C$) > productive green district ($28.31^{\circ}C$). The average relative humidity was in the order: productive green district (70.12%) > general residential district (69.93%) > general commercial district (66.48%). The average wind speed was in the order: productive green district (0.95 m/s) > general commercial district (0.87 m/s) > general residential district (0.54 m/s). Positive and negative ions were investigated to determine the ion index by land use type. The average amount of positive ion generated was in the order: general commercial district ($737ea/cm^3$) > general residential district ($492ea/cm^3$) > productive green district ($445ea/cm^3$). The average negative ion production decreased in the order: productive green district ($930ea/cm^3$) > general residential district ($754ea/cm^3$) > general commercial district ($744ea/cm^3$). The ion index calculated from measured data can be arranged in the order: productive green district (2.09) > general residential district (1.53) > general commercial district (1.01). These results confirm the state of positive and negative ion generation in each land use type. Further, the differences in the ion index by land use type were confirmed. However, a limitation of this study is that simple summer measurements were conducted, and seasonal characteristics were not considered. Therefore, any future investigation and research should consider seasonal variation characteristics.

Urgency of LiFePO4 as cathode material for Li-ion batteries

  • Guo, Kelvii Wei
    • Advances in materials Research
    • /
    • 제4권2호
    • /
    • pp.63-76
    • /
    • 2015
  • The energy crisis involving depletion of fossil fuel resource is not the sole driving force for developing renewable energy technologies. Another driving force is the ever increasing concerns on the air quality of our planet, associated with the continuous and dramatic increase of the concentration of greenhouse gas (mainly carbon dioxide) emissions. The internal combustion engine is a major source of distributed $CO_2$ emissions caused by combustion of gasoline derived largely from fossil fuel. Another major source of $CO_2$ is the combustion of fossil fuels to produce electricity. New technologies for generating electricity from sources that do not emit $CO_2$, such as water, solar, wind, and nuclear, together with the advent of plug-in hybrid electric vehicles (PHEV) and even all-electric vehicles (EVs), offer the potential of alleviating our present problem. Therefore, the relevant technologies in $LiFePO_4$ as cathode material for Li-ion batteries suitable to the friendly environment are reviewed aim to provide the vital information about the growing field for energies to minimize the potential environmental risks.

Proton Temperature Anisotropy vs Parallel Beta in the Solar Wind

  • Yoon, Peter H.
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.92.2-92.2
    • /
    • 2011
  • In view of the planned NASA's and ESA's Solar Probe Plus and Solar Orbiter missions, respectively, to probe the inner heliosphere and the Sun's corona, it is timely to investigate outstanding problems associated with the solar wind. Among them is the temperature anisotropy problem. As the solar wind expands into the interplanetary space, the density and magnetic field decreases radially, thus leading to temperature anisotropy ($T_{\parallel}{\gg}T_{\perp}$). However, the measured temperature anisotropy can at times be characterized by $T_{\perp}$ > $T_{\parallel}$, while at other times the measured $T_{\parallel}/T_{\perp}$ is much milder than predicted by adiabatic theory. Physical reasons remain poorly understood. This notwithstanding, it is known from plasma physics that for $T_{\perp}$ > $T_{\parallel}$ electromagnetic ion-cyclotron (EMIC) and mirror instabilities are excited, while for $T_{\parallel}$ > $T_{\perp}$, fire-hose instability is excited. By constructing the threshold conditions for various instabilities, one may construct a closure relation that may be useful for modeling the solar wind. In the present paper we discuss theoretical construction of the anisotropy-beta relation by means of quasi-linear theories of these instabilities. The present work complements previous efforts on the basis of linear theory, hybrid simulations, and empirical fits of observations.

  • PDF

경주 남산 소나무림의 가을철 해발고도별 음이온 발생지수 (Negative Ion Generation Index according to Altitude in the Autumn of Pine Forest in Gyeongju Namsan)

  • 김정호;윤지훈;이상훈;최원준;윤용한
    • 한국환경생태학회지
    • /
    • 제32권4호
    • /
    • pp.413-424
    • /
    • 2018
  • 본 연구에서는 경주 남산을 대상으로 지형구조 및 해발고도가 음이온 발생량에 미치는 영향을 분석하였다. 분석결과, 기온은 능선부($9.82^{\circ}C$) > 계곡부($8.44^{\circ}C$), 상대습도는 계곡부(59.01%) > 능선부(58.64%), 풍속은 능선부(0.63m/s) > 계곡부(0.37m/s), 일사량은 능선부($34.40W/m^2$) > 계곡부($14.69W/m^2$)로 나타났다. 음이온의 경우 계곡부($636.81ea/cm^3$) > 능선부($580.04ea/cm^3$)로 계곡부가 더 높은 음이온 발생량을 보였다. 해발고도와의 상관성 분석 결과, 계곡부에서는 기온, 상대습도, 일사량, 음이온 발생량과의 상관성이 검증되었으며, 상대습도, 일사량, 음이온 발생량과는 정의 상관관계, 기온과 부의 상관관계가 나타났다. 능선부에서는 기온, 상대습도, 풍속, 일사량, 음이온 발생량과의 상관성이 검증되었으며, 상대습도, 일사량, 음이온 발생량과는 정의 상관관계, 기온, 풍속과는 부의 상관관계가 나타났다. 회귀분석 결과, 기온의 경우 계곡부는 y= -0.006x+9.663 (x=해발고도, y=기온), 능선부의 경우 y= -0.009x+11.595(x=해발고도, y=기온)의 예측식을 얻었다. 상대습도의 경우 계곡부는 y= 0.027x+53.561 (x=해발고도, y=상대습도), 능선부의 경우 y= 0.008x+56.646 (x=해발고도, y=상대습도)의 예측식을 얻었다. 음이온 발생량의 경우 계곡부는 y= 0.577x+521.508 (x=해발고도, y=음이온 발생량), 능선부의 경우 y= 0.605x+549.068 (x=해발고도, y=음이온 발생량)의 예측식을 얻었다.

Seasonal and local time variations of sporadic E layer over South Korea

  • Jo, Eunbyeol;Kim, Yong Ha;Moon, Suin;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권2호
    • /
    • pp.61-68
    • /
    • 2019
  • We have investigated the variations of sporadic E (Es) layer using the measurements of digisondes at Icheon ($37.14^{\circ}N$, $127.54^{\circ}E$, IC) and Jeju ($33.4^{\circ}N$, $126.30^{\circ}E$, JJ) in 2011-2018. The Es occurrence rate and its critical frequency (foEs) have peak values in summer at both IC and JJ in consistent with their known seasonal variations at mid-latitudes. The virtual height of the Es layer (h'Es) during equinox months is greater than that in other months. It may be related to the similar variation of meteor peak heights. The h'Es shows the semidiurnal variations with two peaks at early in the morning and late in the afternoon during equinoxes and summer. However, the semi-diurnal variation is not obvious in winter. The semi-diurnal variation is generally thought to be caused by the semi-diurnal tidal variation in the neutral wind shear, whose measurements, however, are rare and not available in the region of interest. To investigate the formation mechanism of Es, we have derived the vertical ion drift velocity using the Horizontal Wind Model (HWM) 14, International Geomagnetic Reference Field, and Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar-00 models. Our results show that h'Es preferentially occur at the altitudes where the direction of the vertical ion velocity changes. This result indicates the significant role of ion convergence in the creation of Es.

Observations for the Ionosphere Using European Incoherent Scatter (EISCAT) in the Dayside Polar Cap/Cusp and Auroral Region

  • Geonhwa Jee;Eun-Young Ji;Eunsol Kim;Young-Sil Kwak;Changsup Lee;Hyuck-Jin Kwon;Ji-Eun Kim;Young-Bae Ham;Ji-Hee Lee;Jeong-Han Kim;Tae-Yong Yang;Hosik Kam
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권1호
    • /
    • pp.1-10
    • /
    • 2023
  • Korea Polar Research Institute (KOPRI) and Korea Astronomy and Space Institute (KASI) have been participating in the European Incoherent Scatter (EISCAT) Scientific Association as an affiliate institution in order to observe the polar ionosphere since 2015. During the period of December 16-21, 2016 and January 3-9, 2018, the observations for the polar ionospheric parameters such as the electron density profiles, ion drift, and electron/ion temperature are carried out in the polar cap/cusp region by the EISCAT Svalbard radar (ESR). The purpose of the observations is to investigate the characteristic of the winter ionosphere in the dayside polar cap/cusp region. In this paper, we briefly report the results of the ESR observations for winter daytime ionosphere and also the simultaneous observations for the ionosphere-thermosphere system together with the balloon-borne instrument High-Altitude Interferometer WIND Experiment (HIWIND) performed by the High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR). We further introduce our research activities using long-term EISCAT observations for the occurrence of ion upflow and the climatology of the polar ionospheric density profiles in comparison with the mid-latitude ionosphere. Finally, our future research plans will briefly be introduced.

Theoretical construction of solar wind proton temperature anisotropy versus beta inverse correlation

  • 서정준;;김관혁;이동훈
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.118.1-118.1
    • /
    • 2012
  • In situ observations from the Wind spacecraft that statistically analyzed the solar wind proton at 1 AU has indicated that the measured proton temperature anisotropies seems to be regulated by the oblique instabilities (the mirror and oblique firehose). This result is in contradiction with the prediction of linear kinetic theory that the ion-cyclotron (for ${\beta}_{\parallel}$ < 2) and parallel firehose (for ${\beta}_{\parallel}$ <10) would dominate over the oblique instabilities. Various kinds of physical mechanisms have been suggested to explain this disagreement between the observations and linear theory. All of the suggestions consider the solar wind as a unoform magnetized plasma. However the real space environment is replete with the intermediate spatio-temporal scale variations associated with various physical quantities, such as the magnetic field intensity and the solar wind density. In this paper we present that the pervasive intermediate-scale temporal variation of the local magnetic field intensity can lead to the modification of the proton temperature anisotropy versus beta inverse correlation for temperature-anisotropy-driven instabilities. By means of quasilinear kinetic theory involving such temporal variation, we construct the simulated solar wind proton data distribution associated the magnetic fluctuations in (${\beta}_{\parallel}$, $T_{\perp}/T_{\parallel}$) space. It is shown that the theoretically simulated proton distribution and a general trend of the enhanced fluctuations bounded by the oblique instabilities are consistent with in situ observations. Furthermore, the measure magnetic compressibility can be accounted for by the magnetic spectral signatures of the unstable modes.

  • PDF

학교 숲 식재구조에 따른 음이온 발생량 비교 분석 (A Comparative Analysis of Negative Air Ions according to the Planting Structure at School Forests)

  • 김정호;오득균;박용관;윤용한
    • 한국조경학회지
    • /
    • 제43권5호
    • /
    • pp.55-64
    • /
    • 2015
  • 본 연구는 쾌적성을 증진시킬 수 있고, 인간의 건강에 긍정적인 영향을 미칠 수 있는 음이온을 평가인자로 설정하고, 학교별 녹지특성 및 배치, 기상요소를 구분하여 음이온 발생에 효과적인 학교숲 조성모델을 제시하고, 더 나아가 도시녹지 조성에 대한 기초자료로 제공하고자 하였다. 연구결과, 음이온의 경우 식재구조에 따라 차이가 있으며, 단층구조($934ea/cm^3$) > 다층구조($794ea/cm^3$) > 잔디($553ea/cm^3$) > 나지($529ea/cm^3$)의 순으로 분석되었다. 또한 기상요소와의 상관성의 경우, 기온과 부의 상관관계인 것으로 분석되었다. 분산분석 및 사후분석 결과, 식재구조의 차이에 따른 음이온발생량은 통계적으로 차이가 있는 것으로 분석되었다. 녹지구조에 따른 음이온농도의 차이는 다층구조보다 단층구조에서 더 높은 것으로 분석되었다. 이는 다층구조에서 단층구조보다 기온이 더 높게 측정되었는데, 선행연구 고찰결과, 음이온 발생원에서 일정거리 이내에서는 기온이 높을수록 음이온 농도가 낮아지기 때문인 것으로 사료되었다. 또한 풍속이 다층구조 식재구조보다 단층구조 식재구조에서 더 높게 측정되었는데, 음이온의 확산에 있어 단층구조 식재구조가 다층구조 식재구조에 비하여 수목에 의한 바람의 차폐가 상대적으로 덜 이루어져 음이온의 발생과 확산이 더 유리할 것으로 사료되었다.

비래염분 전송 및 RC조 구조물 부착과정에 관한 분석 모델링 제안 (A Proposal of Analysis Modeling on the Transfer and Adhesion of Incoming Salt to RC Structure)

  • 조규환;김우재;안재철;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.91-92
    • /
    • 2012
  • RC structure which is located at shoreline has more serious damages compared with inland structure, because it is directly exposed to chlorine ion which is called incoming salt. In the transmission of incoming salt, differences in transmitted volume of incoming salts could occur according to the influences of local shoreline topography which includes surrounding weather conditions, types of building placements, obstacles of wind tunnel etc. And therefore, for the application of boundary conditions for durable offshore structure design against the salt attack, comparative analysis through wind tunnel test and fluid value simulation are executed in order to investigate the moving and adhesion process of incoming salt to offshore structure.

  • PDF

군집분석법과 분산주성분분석법을 이용한 대기분진시료의 분류 (Classification of Ambient Particulate Samples Using Cluster Analysis and Disjoint Principal Component Analysis)

  • 유상준;김동술
    • 한국대기환경학회지
    • /
    • 제13권1호
    • /
    • pp.51-63
    • /
    • 1997
  • Total suspended particulate matters in the ambient air were analyzed for eight chemical elements (Ca, Co, Cu, Fe, Mn, Pb, Si, and Zn) using an x-ray fluorescence spectrometry (XRF) at the Kyung Hee University - Suwon Campus during 1989 to 1994. To use these data as basis for source identification study, membership of each sample was selected to represent one of the well defined sample groups. The data sets consisting of 83 objects and 8 variables were initially separated into two groups, fine (d$_{p}$<3.3 ${\mu}{\textrm}{m}$) and coarse particle groups (d$_{p}$>3.3 ${\mu}{\textrm}{m}$). A hierarchical clustering method was examined to obtain possible member of homogeneous sample classes for each of the two groups by transforming raw data and by applying various distances. A disjoint principal component analysis was then used to define homogeneous sample classes after deleting outliers. Each of five homogeneous sample classes was determined for the fine and the coarse particle group, respectively. The data were properly classified via an application of logarithmic transformation and Euclidean distance concept. After determining homogeneous classes, correlation coefficients among eight chemical variables within all the homogeneous classes for calculated and meteorological variables (temperature. relative humidity, wind speed, wind direction, and precipitation) were examined as well to intensively interpret environmental factors influencing the characteristics of each class for each group. According to our analysis, we found that each class had its own distinct seasonal pattern that was affected most sensitively by wind direction.ion.

  • PDF