Browse > Article
http://dx.doi.org/10.5140/JASS.2019.36.2.61

Seasonal and local time variations of sporadic E layer over South Korea  

Jo, Eunbyeol (Dept. Astronomy, Space Science and Geology, Chungnam National University)
Kim, Yong Ha (Dept. Astronomy, Space Science and Geology, Chungnam National University)
Moon, Suin (Dept. Astronomy, Space Science and Geology, Chungnam National University)
Kwak, Young-Sil (Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.36, no.2, 2019 , pp. 61-68 More about this Journal
Abstract
We have investigated the variations of sporadic E (Es) layer using the measurements of digisondes at Icheon ($37.14^{\circ}N$, $127.54^{\circ}E$, IC) and Jeju ($33.4^{\circ}N$, $126.30^{\circ}E$, JJ) in 2011-2018. The Es occurrence rate and its critical frequency (foEs) have peak values in summer at both IC and JJ in consistent with their known seasonal variations at mid-latitudes. The virtual height of the Es layer (h'Es) during equinox months is greater than that in other months. It may be related to the similar variation of meteor peak heights. The h'Es shows the semidiurnal variations with two peaks at early in the morning and late in the afternoon during equinoxes and summer. However, the semi-diurnal variation is not obvious in winter. The semi-diurnal variation is generally thought to be caused by the semi-diurnal tidal variation in the neutral wind shear, whose measurements, however, are rare and not available in the region of interest. To investigate the formation mechanism of Es, we have derived the vertical ion drift velocity using the Horizontal Wind Model (HWM) 14, International Geomagnetic Reference Field, and Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar-00 models. Our results show that h'Es preferentially occur at the altitudes where the direction of the vertical ion velocity changes. This result indicates the significant role of ion convergence in the creation of Es.
Keywords
ionosphere; sporadic E; ionosonde; semidiurnal tide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arras C, Wickert J, Beyerle G, Heise S, Schmidt T, et al., A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett. 35, L14809 (2008). https://doi.org/10.1029/2008GL034158   DOI
2 Chen G, Zhao Z, Yang G, Zhou C, Yao M, et al., Enhancement and HF Doppler observations of sporadic-E during the solar eclipse of 22 July 2009, J. Geophys. Res. 115, A09314 (2010). https://doi.org/10.1029/2010JA015530
3 Chu YH, Wang CY, Wu KH, Chen KT, Tzeng KJ, et al., Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination, J. Geophys. Res. 119, 2117-2136 (2014). https://doi.org/10.1002/2013JA019437   DOI
4 Haldoupis C, Kelley MC, Hussey GC, Shalimov S, Role of unstable sporadic-E layers in the generation of midlatitude spread F, J. Geophys. Res. 108, 1446 (2003). https://doi.org/10.1029/2003JA009956   DOI
5 Haldoupis C, Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling, Space Sci. Rev. 168, 441-461 (2012).   DOI
6 Haldoupis C, Meek C, Christakis N, Pancheva D, Bourdillon A, Ionogram height-time-intensity observations of descending sporadic E layers at mid-latitude, J. Atmos. Sol. Terr. Phys. 68, 539-557 (2006). https://doi.org/10.1016/j.jastp.2005.03.020   DOI
7 Haldoupis C, Pancheva D, Singer W, Meek C, MacDougall J, An explanation for the seasonal dependence of midlatitude sporadic E layers, J. Geophys. Res. 112, A06315 (2007). https://doi.org/10.1029/2007JA012322
8 Hong J, Kim YH, Chung JK, Ssessanga N, Kwak, YS, Tomography reconstruction of ionospheric electron density with empirical orthonormal functions using Korea GNSS network, J. Astron. Space Sci. 34, 7-17 (2017). https://doi.org/10.5140/JASS.2017.34.1.7   DOI
9 Jeong, SH, Kim YH, Kim K, Manual scaling of ionograms measured at Jeju ($33.4^{\circ}N$, $126.3^{\circ}E$) throughout 2012, J. Asrton. Space Sci. 35, 143-149 (2018). https://doi.org/10.5140/JASS.2018.35.3.143
10 Kelley, MC, The Earth's Ionosphere: plasma Physics and Electrodynamics. 2nd ed. (Academic Press, London, 2009), 284.
11 Lee CC, Chen WS, Effects of sporadic E-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere: A climatological study, J. Atmos. Sol. Terr. Phys. 169, 130-137 (2018). https://doi.org/10.1016/j.jastp.2018.02.002   DOI
12 Lee C, Kim JH, Jee G, Lee W, Song IS, et al., New method of estimating temperatures near the mesopause region using meteor radar observation, Geophys. Res. Lett., 43, 10580-10585 (2016) doi:10.1002/2016GL071082   DOI
13 Maeda J, Heki K, Two-dimensional observations of midlatitude sporadic E irregularities with a dense GPS array in Japan, Radio Sci. 49, 28-35 (2014). https://doi.org/10.1002/2013RS005295   DOI
14 Otsuka Y, Tani T, Tsugawa T, Ogawa T, Saito A, Statistical study of relationship between medium-scale traveling ionospheric disturbance and sporadic E layer activities in summer night over Japan, J. Atmos. Sol. Terr. Phys. 70, 2196-2202 (2008). https://doi.org/10.1016/j.jastp.2008.07.008   DOI
15 Mathews JD, Sporadic E: current views and recent progress, J. Atmos. Sol. Terr. Phys. 60, 413-435 (1998). https://doi.org/10.1016/S1364-6826(97)00043-6   DOI
16 Ogawa T, Nishitani N, Otsuka Y, Shiokawa K, Tsugawa T, et al., Medium-scale traveling ionospheric disturbances observed with the SuperDARN Hokkaido radar, all-sky imager, and GPS network and their relation to concurrent sporadic E irregularities, J. Geophys. Res. 114, A03316 (2009). https://doi.org/10.1029/2008JA013893
17 Oikonomou C, Haralambous H, Haldoupis C, Meek C, Sporadic E tidal variabilities and characteristics observed with the Cyprus Digisonde, J. Atmos. Sol. Terr. Phys. 119, 173-183 (2014). https://doi.org/10.1016/j.jastp.2014.07.014   DOI
18 Pietrella M, Pezzopane M, Bianchi C, A comparative sporadic-E layer study between two mid-latitude ionospheric stations, Adv. Space Res. 54, 150-160 (2014). https://doi.org/10.1016/j.asr.2014.03.019   DOI
19 Shinagawa H, Miyoshi Y, Jin H, Fujiwara H, Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA, J. Geophys. Res. 122, 4450-4465 (2017). https://doi.org/10.1002/2016JA023778   DOI
20 Tan ZX, Huang XY, Wang S, A preliminary investigation of ionospheric Es-s over Wuchang, China, J. Atmos. Terr. Phys. 47, 959-963 (1985). https://doi.org/10.1016/0021-9169(85)90073-X   DOI
21 Yeh WH, Liu JY, Huang CY, Chen SP, Explanation of the sporadic-E layer formation by comparing FORMOSAT-3/COSMIC data with meteor and wind shear information, J. Geophys. Res. 119, 4568-4579 (2014). https://doi.org/10.1002/2013JD020798   DOI
22 Zhou C, Tang Q, Song X, Qing H, Liu Y, et al., A statistical analysis of sporadic E layer occurrence in the midlatitude China region, J. Geophys. Res. 122, 3617-3631 (2017). https://doi.org/10.1002/2016JA023135   DOI
23 Yu B, Xue X, Lu G, Ma M, Dou X, et al., Evidence for lightning-associated enhancement of the ionospheric sporadic E layer dependent on lightning stroke energy, J. Geophys. Res. 120, 9202-9212 (2015). https://doi.org/10.1002/2015JA021575   DOI
24 Yuan T, Wang J, Cai X, Sojka J, Rice D, et al., Investigation of the seasonal and local time variations of the high-altitude sporadic Na layer (Nas) formation and the associated midlatitude descending E layer (Es) in lower E region, J. Geophys. Res. 119, 5985-5999 (2014). https://doi.org/10.1002/2014JA019942   DOI
25 Zhang Y, Wu J, Guo L, Hu Y, Zhao H, et al., Influence of solar and geomagnetic activity on sporadic-E layer over low, mid and high latitude stations, Adv. Space Res. 55, 1366-1371 (2015). https://doi.org/10.1016/j.asr.2014.12.010   DOI