• Title/Summary/Keyword: ion transport

Search Result 469, Processing Time 0.027 seconds

The Ion Transport Phenomena through the Liquid Membrane with Macrocylic Compound (II). Transport of $H^+$Ion through Organic Liquid Membranes Containing Dibenzo-18-crown-6 and Dicyclohexyl-18-crown-6 as Carrier (마크로고리 화합물을 운반체로 하는 액체막을 통한 이온의 운반에 관한 연구 (제2보). 유기액체막 운반체를 통한 수소이온의 운반)

  • Yoon, Chang-Ju;Lee, Shim-Sung;Kim, Young-Hee;Kim, Si-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.170-175
    • /
    • 1984
  • The transport rates of $H^+$ ion by DBC and DCC as carrier molecules through organic liquid membranes were determined at 25$^{\circ}$C. The transport rates depend highly on the dielectric constants of membrane solvents and these results were discussed in terms of Born's potential energy barrier methods. The sizes of anions also affect the transport rates and these results were well explained theoreticlly by extended Born's equation.

  • PDF

Electroconvective Instability on Undulated Ion-selective Surface (파상형 이온 선택 표면상의 전기와류 불안정성)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.735-742
    • /
    • 2019
  • In this work, the electrokinetic interactions between the undulated structure of an ion-selective membrane and electroconvective instability has been studied using numerical analysis. Using finite element method, electric field-ionic species transport-flow field were analyzed by fully-coupled manner. Through the numerical study, the Dukhin's mode as the mechanism of undulated surface for the electroconvective instability were proven. The Dukhin's mode which competes with Rubinstein's mode has roles of (i) decreasing transition voltage to overlimiting regime and (ii) non-linearly increasing of overlimiting current. Also, (iii) the mixing efficiency is enhanced by removal mechanism of high-frequency Fourier mode of the electroconvective instability. Conclusively, the undulated ion-selective surface would provide energy-efficient mechanism for ion-selective transport systems such as electrodialysis, electrochemical battery, etc.

Transport of Zinc Ion in a Contained Liquid Membrane Permeator with Two Micro-Porous Films (지지막을 이용하는 액막 추출기 내에서 아연 이온의 이동)

  • 주창식;이석희;이민규;홍성수;하홍두;정석기
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.159-164
    • /
    • 2000
  • For the purpose of development of a liquid membrane permeator which separates metal ions from aqueous solutions continuously and effectively, a continuous membrane permeator with the membrane solution trapped between extraction and stripping phases by two micro-porous hydrophilic films was manufactured. Experimental researches on the separation of zinc ion from aqueous solutions were performed in the liquid membrane permeator with 30 vol % D2EHPA solution in kerosine as liquid membrane. As results, the liquid membrane permeator separates zinc ion from aqueous solutions continuously and effectively in the wide range of operating conditions. A simple mass transfer rate model using equilibrium constant of the extraction reaction for the system used were proposed, and the model was compared with experimental results of separation of zinc ion in the permeator. And the effects of operating factors, such as space time, pH of extraction solution, extraction temperature, on the separation rate of zinc ion in the permeator were experimentally examined.

  • PDF

A Kinetic Study of Phosphate Absorption by Rice Roots (벼에 의한 인산흡수의 기작에 관한 연구)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.21 no.1_4
    • /
    • pp.33-38
    • /
    • 1978
  • Phosphate absorption from a Na2H32PO4 solution by Oryza sativa L. was studied in order to elucidate kinetic mechanisms of ion transport. The rates of phosphate absorption from different concentraitons indicated the presence of dual mechanisms in root tips, one in the low (1$\times$10-6 to 8$\times$10-5M) and the other in the high (1$\times$10-4 to 8$\times$10-3M). A phosphate compensation point of phosphate transport was revealed with a 1$\times$10-6M solution of Na2H32PO4. The kinetic model that ion transport involves an exchange reaction of absorption and desorptin is prosposed as follows: where C represents an ionic-specific organic carrier in the membrane; M, Mo and Mi are the mineral ions, M-outside and M-inside; MC is a carrier-ion complex; and the K's represent rate constants. In this model, the Mi velocity, v, is given by: {{{{v= {dMi} over {dt}= {(K1K3Mo-K2K4Mi) Ct} over {(K2+K3)+K1Mo+K4Mi} }} where Ct is equal to C+MC, and t is time.

  • PDF

Separation and Recovery of Heavy Metal Ion using Liquid Membrane (액체막법에 의한 중금속이온의 분리 및 회수)

  • Jo, Mun Hwan;Jeong, Hak Jin;Lee, Sang In;Kim, Jin Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.122-128
    • /
    • 1994
  • Macrocyclic ligand has been known to selectively bind with metal ions so that ability applied for the transport of metal ions across the emulsion liquid membrane in this study. The metal ions are transproted from the source phase to the receiving phase by the carrier of the organic phase. Several factors involved in the transport of metal ions acrose the emulsion membrane we reported here and these factors provided the informations for the selective seperation of some metal ion. Stability constants for cation-macrocyclic ligand and metal ion-anion receiving phase interaction are examined as parameters for the prediction of metal ion transport selectivities. $Pb^{2+}$ was transported higher rates than the other metal ions in the mixture solution. The interaction of metal ion to anion in receiving phase is important. $S_2O_3^{2-}$- in replacement of $NO_3^-$ in the receiving phase enhances the transport of $Pb^{2-}$since $Pb^{2-}-S_2O_3^{2-}$interaction is greater than $Pb^{2+}-NO_3^-$ interaction.

  • PDF

Comparison of Arrhenius and VTF Description of Ion Transport Mechanism in the Electrolytes (전해질 이온이동 기작 기술을 위한 아레니우스 모델 및 VTF 모델 비교)

  • Kim, Hyoseop;Koo, Bonhyeop;Lee, Hochun
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.81-89
    • /
    • 2020
  • To understand the performance of the electrochemical device, the analysis of the mechanism of ionic conduction is important. However, due to the ionic interaction in the electrolyte and the complexity of the electrolyte structure, a clear analysis method of the ion conduction mechanism has not been proposed. Instead, a variety of mathematical models have been devised to explain the mechanism of ion conduction, and this review introduces the Arrhenius and Vogel-Tammann-Fulcher (VTF) model. In general, the above two mathematical models are used to describe the temperature dependence of the transport properties of electrolytes such as ionic conductivity, diffusion coefficient, and viscosity, and a suitable model can be determined through the linearity of the graph consisting of the logarithm of the moving property and the reciprocal of the temperature. Currently, many electrolyte studies are evaluating the suitability of the above two models for electrolytes by varying the composition and temperature range, and the ion conduction mechanism analysis and activation energy calculation are in progress. However, since there are no models that can accurately describe the transport properties of electrolytes, new models and improvement of existing models are needed.

Dehydration of Pyridine Aqueous Solution through Poly(acryionitrile-co-4-styrene sulfonic acid) Membranes by Pervaporation

  • Wang, Wun-Jae;Oh, Boo-Keun;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.55-56
    • /
    • 1994
  • There has been many attempts to improve the membrane performance using pervaporation processes[l-3]. They are 1) blending polymer with the high flux and one with high selectivity, 2) an incorporation of functional groups interacting with permeants into a membrane through copolymerization or modification, 3) composite membrane or asymmetric membrane structure with a thin skin layer which acts as a selective layer. Among them, a polymeric membrane containing ion complex group receives an extensive attention recently because ionic complex is known to activate the water transport through ion-dipole interaction. It is especially advantageous in the separation of organic-water system. We applied the ideas of the activation of water transport through ion-dipole. We have reported on the in-sire complex membrane to separate water from aqueous aceiic acid and pyridme solution[4-5] based on the simple acid-base theory. Water transport was enhanced through in-situ complex between pyridine moiety in the membrane and the incoming acetic acid in the feed. In this case, catalytic transport mechanism was proposed. In the present study we used pyridine solution as a feed and the sulfonic acid group in the membrane.

  • PDF

Conduction Mechanism of Charge Carriers in Electrodes and Design Factors for the Improvement of Charge Conduction in Li-ion Batteries

  • Akhtar, Sophia;Lee, Wontae;Kim, Minji;Park, Min-Sik;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li+) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.

DEVELOPMENT OF A NEW ION TRANSPORT CODE FOR PLANETARY IONOSPHERES WITH EXPLICIT TREATMENT OF ION-ION COLLISION

  • KIM YONG HA
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.59-66
    • /
    • 2005
  • A new ion transport code for planetary ionospheric studies has been developed with consideration of velocity differences among ion species involving ion-ion collision. Most of previous planetary ionosphere models assumed that ions diffuse through non-moving ion and neutral background in order to consolidate continuity and momentum equations for ions into a simple set of diffusion equations. The simplification may result in unreliable density profiles of ions at high altitudes where ion velocities are fast and their velocity differences are significant enough to cause inaccuracy when computing ion-ion collision. A new code solves explicitly one-dimensional continuity and momentum equations for ion densities and velocities by utilizing divided Jacobian matrices in matrix inversion necessary to the Newton iteration procedure. The code has been applied to Martian nightside ionosphere models, as an example computation. The computed density profiles of $O^+,\;OH^+$, and $HCO^+$ differ by more than a factor of 2 at altitudes higher than 200 km from a simple diffusion model, whereas the density profile of the dominant ion, $O_2^+$, changes little. Especially, the density profile of $HCO^+$ is reduced by a factor of about 10 and its peak altitude is lowered by about 40 km relative to a simple diffusion model in which $HCO^+$ ions are assumed to diffuse through non-moving ion background, $O_2^+$. The computed effects of the new code on the Martian nightside models are explained readily in terms of ion velocities that were solved together with ion densities, which were not available from diffusion models. The new code should thus be expected as a significantly improved tool for planetary ionosphere modelling.

Transport Characteristic of Heavy Metals in Contaminated Soil (오염된 토양층내의 중금속 이동 특성)

  • 조재범;현재혁;정진홍;김원석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.236-239
    • /
    • 1998
  • This research was performed to check the transport characteristics of heavy metals in contaminated soil, that is, the influence of humic acid and phosphate on transport characteristics of heavy metals was studied. From the results of column mode experiments about heavy metal behavior, the order time to reach breakthrough and equilibrium was soil + humic acid( 20g ) > soil + humic acid ( 5 g ) > soil without Humic acid addition > soil+humic acid( 50g ). It is because the dissolved organic carbon content increased as the soil organic matter content increased. As the phosphate increased, so did the time to reach breakthrough and equilibrium. The order of time was soil + phosphate( 50 mg ) > soil + phosphate( 20 mg ) > soil . phosphate( 10 mg ) > soil without phosphate addition. It is because the phosphate ion worked as alkalinity donor and the calcium ion co-injected worked as the accelerator of coprecipitation of heavy metals.

  • PDF