Browse > Article
http://dx.doi.org/10.5229/JKES.2020.23.4.81

Comparison of Arrhenius and VTF Description of Ion Transport Mechanism in the Electrolytes  

Kim, Hyoseop (School of Undergraduate Studies, DGIST)
Koo, Bonhyeop (Energy Science and Engineering, DGIST)
Lee, Hochun (Energy Science and Engineering, DGIST)
Publication Information
Journal of the Korean Electrochemical Society / v.23, no.4, 2020 , pp. 81-89 More about this Journal
Abstract
To understand the performance of the electrochemical device, the analysis of the mechanism of ionic conduction is important. However, due to the ionic interaction in the electrolyte and the complexity of the electrolyte structure, a clear analysis method of the ion conduction mechanism has not been proposed. Instead, a variety of mathematical models have been devised to explain the mechanism of ion conduction, and this review introduces the Arrhenius and Vogel-Tammann-Fulcher (VTF) model. In general, the above two mathematical models are used to describe the temperature dependence of the transport properties of electrolytes such as ionic conductivity, diffusion coefficient, and viscosity, and a suitable model can be determined through the linearity of the graph consisting of the logarithm of the moving property and the reciprocal of the temperature. Currently, many electrolyte studies are evaluating the suitability of the above two models for electrolytes by varying the composition and temperature range, and the ion conduction mechanism analysis and activation energy calculation are in progress. However, since there are no models that can accurately describe the transport properties of electrolytes, new models and improvement of existing models are needed.
Keywords
Electrolyte; Ion Conductivity; Arrhenius Model; VTF Model; Glass Transition Temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Y. Gu, R. Laura and K. M. Abraham, 'ConductivityTemperature Behavior of Organic Electrolytes', Electrochem. Soild-State Lett., 2, 486-489 (1999).   DOI
2 Y. Wu, "Lithium-Ion Batteries: Fundamentals and Applications" CRC Press, Florida (2015).
3 M. Petrowsky and R. Frech, 'Temperature Dependence of Ion Transport: The Compensated Arrhenius Equation', J. Phys. Chem. B., 113, 5996-6000 (2009).   DOI
4 R. Syed, D. L. Gavin and C. T. Moynihan, 'Functional Form of Arrhenius Equation for Electrical Conductivity of Glass', J. Am. Ceram. Soc., 65, 129-130 (1982).
5 H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao and J. Lin, 'The Polymer Gel Electrolyte Based on Poly(methyl methacrylate) and Its Application in Quasi-Solid-DyeSensitized Solar Cells', Mater. Chem. Phys., 110, 38-42 (2008).   DOI
6 C. Wastlund, M. Schmidt, S. Schantz and F. H. J. Maurer, 'Free Volume, Mobility and Structural relaxations in Poly(Ethylene Oxide)/Poly(Methyl Methacrylate) Blends', Polym. Eng. Sci., 38, 1286-1294 (1998).   DOI
7 Z. Ogumi, "Lithium Secondary Batteries", Ajin, Korea (2010).
8 K. Dokko, D. Watanabe, Y. Ugata, M. L. Thomas, S. Tsuzuki, W. Shinoda, K. Hashimoto, K. Ueno, Y. Umebayashi and M. Watanabe, 'Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes', J. Phys. Chem. B., 122, 10736-10745 (2018).   DOI
9 G. Y. Gu, S. Bouvier, C. Wu, R. Laura, M. Rzeznik and K. M. Abraham, '2-Methoxyethyl (methyl) CarbonateBased Electrolytes for Li-Ion Batteries', Electrochim. Acta., 45, 3127-3139 (2000). (Figure 6, 7) Reprinted from Electrochim. Acta., 45, G. Y. Gu, S. Bouvier, C. Wu, R. Laura, M. Rzeznik and K. M. Abraham, 2-Methoxyethyl (methyl) Carbonate-Based Electrolytes for Li-Ion Batteries, 3129-3130., Copyright (2020), with permission from Elsevier.   DOI
10 Y. Kang, K. Cheong, K. Noh, C. Lee and D. Seung, 'A Study of Cross-Linked PEO Gel Polymer Electrolytes Using Bisphenol a Ethoxylate Diacrylate: Ionic Conductivity and Mechanical Properties', J. Power. sources., 119-121, 432-437 (2003).   DOI
11 K. M. Diederichsen, H. G. Buss and B. D. McCloskey 'The Compensation Effect in the Vogel-TammannFulcher (VTF) Equation for Polymer-Based Electrolytes', Macromolecules., 50, 3831-3840 (2017).   DOI
12 B. Wang, S. Q. Li and S. J. Wang, 'Correlation between the Segmental Motion and Ionic Conductivity of Poly(ether urethane)-LiClO4 Complex Studied by Positron Spectroscopy', Phys. Rev. B., 56, 11503-11507 (1997).   DOI
13 O. Bohnke, C. Bohnke and J. L. Fourquet, 'Mechanism of Ionic Conduction and Electrochemical Intercalation of Lithium into the Perovskite Lanthanum Lithium Titanate', Solid. State. Ionics., 91, 21-31 (1996).   DOI
14 S. S. Zhang and G. X. Wan, 'Single-Ion Conduction and Lithium Battery Application for Ionomeric CrossLinking Polymer', J. Appl. Polym. Sci., 48, 405-409 (1993).   DOI
15 J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta and G. C. Allan, 'Viscosity of Glass-Forming Liquids', Proc. Nati. Acad. Sci. USA., 106, 19780-19784 (2009).   DOI
16 P. M. Richardson, A. M. Voice and I. M. Ward, 'Pulsedfield Gradient NMR Self Diffusion and Ionic Conductivity Measurements for Liquid Electrolytes Containing LiBF4 and Propylene Carbonate', Electrochim. Acta., 130, 606-618 (2014).   DOI
17 M. D. Ediger, C. A. Angell and S. R. Nagel, 'Supercooled Liquids and Glasses', J. Phys. Chem., 100, 13200-13212 (1996). (Figure 3, 4.) Reprinted with permission from (M. D. Ediger, C. A. Angell and S. R. Nagel, 'Supercooled Liquids and Glasses', J. Phys. Chem., 100, 13200-13212 (1996).). Copyright (2020) American Chemical Society.   DOI
18 S. Sakka and J. D. Mackenzie, 'Relation Between Apparent Glass Transition Temperature and Liquidus Temperature for Inorganic Glasses', J. Non. Cryst. Solids., 6, 145-162 (1971).   DOI
19 J. P. Southall, H. V. St. A. Hubbard, S. F. Johnston, V. Rogers, G. R. Davies, J. E. McIntyre and I. M. Ward, 'Ionic Conductivity and Viscosity Correlations in Liquid Electrolytes for Incorporation into PVDF Gel Electrolytes', Solid. State. Ion., 85, 51-60 (1996).   DOI
20 M. S. Ding and T. R. Jow, 'Conductivity and Viscosity of PC-DEC and PC-EC Solution of LiPF6', J. Electrochem. Soc., 150, 620-628 (2003). (Figure 5.) M. S. Ding and T. R. Jow, 'Conductivity and Viscosity of PC-DEC and PC-EC Solution of LiPF6', J. Electrochem. Soc., 150, 620-628 (2003). © IOP Publishing. Reproduced with permission. All rights reserved.
21 W. Lu, K. Xie, Y. Pan, Z. Chen and C. Zheng, 'Effects of Carbon-Chain Length of Trifluoroacetate Co-Solvents for Lithium-Ion Battery Electrolytes Using at Low Temperature', J. Fluor. Chem., 156, 136-143 (2013). (Figure 2.) Reprinted from J. Fluor. Chem., 156, W. Lu, K. Xie, Y. Pan, Z. Chen and C. Zheng, Effects of Carbon-Chain Length of Trifluoroacetate Co-Solvents for Lithium-Ion Battery Electrolytes Using at Low Temperature, 139., Copyright (2020), with permission from Elsevier.   DOI
22 P. Jeevanandam, S. V. Vasudevan, 'Arrhenius and NonArrhenius Conductivities in Intercalated Polymer electrolytes', J. Chem. Phys., 109, 8109-8117 (1998).   DOI
23 H. J. Rhoo, H. T. Kim, J. K. Park and T. S. Hwang, 'Ionic Conduction in Plasticized PVC/PMMA Blend Polymer Electrolytes', Electrochim. Acta., 42, 1571-1579 (1997).   DOI
24 S. Ramesh, K. H. Leen, K. Kumutha and A. K. Arof, 'FTIR Studies of PVC/PMMA Blend Based Polymer Eletrolytes', Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 66, 1237-1242 (2007)   DOI
25 S. Surampudi, R. A. Marsh, Z. Ogumi and J. Prakash, "Lithium Batteries: Proceedings of the International Symposium", The Electrochemical Society, New Jersey (2000).
26 R. Baskaran, S. Selvasekarapandian, G. Hirankumar and M. S. Bhuvaneswari, 'Vibrational, Ac Impedance and Dielectric Spectroscopic Studies of Poly(vinylacetate)-N,N-Dimethylformamid-LiClO4 Polymer Gel Electrolytes', J. Power. Sources., 134, 235-240 (2004).   DOI
27 Y. H. Choi and W. K. Lee, 'Effect of Plasticizer on Physical Properties of Poly(vinyl acetate-co-ethylene) Emulsion', J. Korean. Ind. Eng. Chem., 20, 459-463 (2009).
28 N. Binesh and S. V. Bhat, 'VTF to Arrhenius Crossover in Temperature Dependence of Conductivity in (PEG)xNH4ClO4 Polymer Electrolyte', J. Polym. Sci. B. Polym. Phys., 36, 1201-1209 (1997).
29 S. S. Zhang, Q. G. Liu and L. L. Yang, 'Single-Ionic Conductivity in Poly(Sodium 2-Methacryloyl 3-[ΩMethoxyl Oligo(Oxyethylene)]Propylsulfonate)', J. Macromol. Sci., 31, 543-553 (1994).
30 L. M. Carvalho, P. Guegan, H. Cheradame, and A. S. Gomes, 'Variation of the Mesh Size of PEO-Based Networks Filled with TFSILi: from an Arrhenius to WLF Type Conductivity Behavior', Eur. Polym. J., 36, 401-409 (2000)   DOI