Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.5.735

Electroconvective Instability on Undulated Ion-selective Surface  

Lee, Hyomin (Department of Chemical and Biological Engineering, Jeju National University)
Publication Information
Korean Chemical Engineering Research / v.57, no.5, 2019 , pp. 735-742 More about this Journal
Abstract
In this work, the electrokinetic interactions between the undulated structure of an ion-selective membrane and electroconvective instability has been studied using numerical analysis. Using finite element method, electric field-ionic species transport-flow field were analyzed by fully-coupled manner. Through the numerical study, the Dukhin's mode as the mechanism of undulated surface for the electroconvective instability were proven. The Dukhin's mode which competes with Rubinstein's mode has roles of (i) decreasing transition voltage to overlimiting regime and (ii) non-linearly increasing of overlimiting current. Also, (iii) the mixing efficiency is enhanced by removal mechanism of high-frequency Fourier mode of the electroconvective instability. Conclusively, the undulated ion-selective surface would provide energy-efficient mechanism for ion-selective transport systems such as electrodialysis, electrochemical battery, etc.
Keywords
Electroconvective instabilitym Ion-selective transport; Undulation; Direct numerical simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abu-Rjal, R., Prigozhin, L., Rubinstein, I. and Zaltzman, B., "Equilibrium Electro-convective Instability in Concentration Polarization: The Effect of Non-equal Ionic Diffusivities and Longitudinal Flow," Russ. J. Eleectrochem., 53(9), 903-918(2017).   DOI
2 Kim, S. J., Song, Y.-A. and Han, J., "Nanofluidic Concentration Devices for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications," Chem. Sov. Rev., 39(3), 912-922(2010).   DOI
3 Masliyah, J. H. and Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena. Wiley, Hoboken, NJ(2006).
4 Schoch, R. B., Han, J. and Renaud, P., "Transport Phenomena in Nanofluidics," Rev. Mod. Phys., 80(3), 839-883(2008).   DOI
5 Probstein, R. F., Physicochemical Hydrodynamics: An Introduction. 2nd ed., Wiley, Hoboken, NJ(2005).
6 Rubinstein, I. and Zaltzman, B., "Electro-Osmotically Induced Convection at a Permselective Membrane," Phys. Rev. E, 62(2), 2238-2251(2000).   DOI
7 Rubinstein, I. and Zaltzman, B., "Electro-osmotic Slip of The Second Kind and Instability in Concentration Polarization at Electrodialysis Membranes," Math. Models Methods Appl. Sci., 11(2), 263-300(2001).   DOI
8 Rubinstein, S. M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R. G. H., Mugele, F. and Wessling, M., "Direct Observation of a Nonequilibrium Electro-Osmotic Instability," Phys. Rev. Lett., 101(23), 236101(2008).   DOI
9 Rubinstein, I. and Zaltzman, B., "Extended Space Charge in Concentration Polarization," Adv. Colloid Interface Sci., 159(2), 117-129 (2010).   DOI
10 Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., "Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel," Phys. Rev. Lett., 99(4), 044501(2007).   DOI
11 Cho, I., Kim, W., Kim, J., Kim, H.-Y., Lee, H. and Kim, S. J., "Non-Negligible Diffusio-Osmosis Inside an Ion Concentration Polarization Layer," Phys. Rev. Lett., 116(25), 254501(2016).   DOI
12 Kwak, R., Pham, V. S., Lim, K. M. and Han, J., "Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices," Phys. Rev. Lett., 110(11), 114501(2013).   DOI
13 Dydek, E. V., Zaltzman, B., Rubinstein, I., Deng, D. S., Mani, A. and Bazant, M. Z., "Overlimiting Current in a Microchannel," Phys. Rev. Lett., 107(11), 118301(2011).   DOI
14 Pham, V. S., Li, Z., Lim, K. M., White, J. K. and Han, J., "Direct Numerical Simulation of Electroconvective Instability and Hysteretic Current-voltage Response of a Permselective Membrane," Phys. Rev. E, 86(4), 046310(2012).   DOI
15 Druzgalski, C. L., Andersen, M. B. and Mani, A., "Direct Numerical Simulation of Electroconvective Instability and Hydrodynamic Chaos Near An ion-selective surface," Phys. Fluids, 25(11), 110804 (2013).   DOI
16 Chang, H. C., Demekhin, E. A. and Shelistov, V. S., "Competition Between Dukhin's and Rubinstein's Electrokinetic Modes," Phys. Rev. E, 86(4), 046319(2012).   DOI
17 Demekhin, E. A., Nikitin, N. V. and Shelistov, V. S., "Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic Motion," Phys. Fluids, 25(12), 122001(2013).   DOI
18 Davidson, S. M., Andersen, M. B. and Mani, A., "Chaotic Induced-Charge Electro-Osmosis," Phys. Rev. Lett., 112(12), 128302(2014).   DOI
19 Mareev, S. A., Butylskii, D. Y., Pismenskaya, N. D., Larchet, C., Dammak, L. and Nikonenko, V. V., "Geometric Heterogeneity of Homogeneous Ion-exchange Neosepta Membranes," J. Membrane Sci., 563, 768-776(2018).   DOI
20 Pundik, T., Rubinstein, I. and Zaltzman, B., "Bulk Electroconvection in Electrolyte," Phys. Rev. E, 72(6), 061502(2005).   DOI
21 de Valenca, J., Jogi, M., Wagterveld, R. M., Karatay, E., Wood, J. A. and Lammertink, R. G. H., "Confined Electroconvective Vortices at Structured Ion Exchange Membranes," Langmuir, 34(7), 2455-2463(2018).   DOI
22 Rubinstein, I. and Zaltzman, B., "Equilibrium Electroconvective Instability," Phys. Rev. Lett., 114(11), 114502(2015).   DOI
23 Druzgalski, C. and Mani, A., "Statistical Analysis of Electroconvection Near an Ion-selective Membrane in the Highly Chaotic Regime," Phys. Rev. Fluids, 1(7), 073601(2016).   DOI
24 Karatay, E., Druzgalski, C. L. and Mani, A., "Simulation of Chaotic Electrokinetic Transport: Performance of Commercial Software Versus Custom-built Direct Numerical Simulation Codes," J. Colloid Interface Sci., 446, 67-76(2015).   DOI
25 Rubinstein, I. and Shtilman, L., "Voltage Against Current Curves of Cation Exchange Membranes," J. Chem. Soc. Faraday Trans., 75(0), 231-246(1979).   DOI
26 Davidson, S. M., Wessling, M. and Mani, A., "On the Dynamical Regimes of Pattern-Accelerated Electroconvection," Sci. Rep., 6, 22505(2016).   DOI