• 제목/요약/키워드: ion beam deposition

검색결과 407건 처리시간 0.028초

Nucleation, Growth and Properties of $sp^3$ Carbon Films Prepared by Direct $C^-$ Ion Beam Deposition

  • Kim, Seong I.
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.173-176
    • /
    • 1997
  • Direct metal ion beam deposition is considered to be a whole new thin film deposition technique. Unlike other conventional thin film deposition processes, the individual deposition particles carry its own ion beam energies which are directly coupled for the formation of this films. Due to the nature of ion beams, the energies can be controlled precisely and eventually can be tuned for optimizing the process. SKION's negative C- ion beam source is used to investigate the initial nucleation mechanism and growth. Strong C- ion beam energy dependence has been observed. Complete phase control of sp3 and sp3, control of the C/SiC/Si interface layer, control of crystalline and amorphous mode growth, and optimization of the physical properties for corresponding applications can be achieved.

  • PDF

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

나노 패터닝을 위한 이온빔-고체 상호작용 분석 (Analysis of Ion Beam-Solid Interactions for Nano Fabrication)

  • 김흥배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.581-584
    • /
    • 2005
  • Ion beam processing is one of the key technologies to realize mastless and resistless sub 50nm nano fabrication. Unwanted effects, however, may occur since an energetic ion can interact with a target surface in various ways. Depending on the ion energy, the interaction can be swelling, deposition, sputtering, re-deposition, implantation, damage, backscattering and nuclear reaction. Sputtering is the fundamental mechanisms in ion beam induced direct patterning. Re-deposition and backscattering are unwanted mechanisms to avoid. Therefore understanding of ion beam-solid interaction should be advanced for further ion beam related research. In this paper we simulate some important interaction mechanisms between energetic incident ions and solid surfaces and the results are compared with experimental data. The simulation results are agreed well with experimental data.

  • PDF

SOLID STATE CESIUM ION BEAM SPUTTER DEPOSITION

  • Baik, Bong-Koo;Choi, Dong-Jun;Han, Dong-Won;Kim, Yong-Hwan;Kim, Seong-In
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.474-477
    • /
    • 1996
  • The solid state cesium ion beam sputter deposition system has been developed for negative carbon ion beam deposition. The negative carbon ion beams are effectively produced by cesium ion bombardment. The C-ion beam current and deposition energy can be independently controlled for the deposition of a-D films. This system is very compact, reliable and high flux without any gas discharge or plasma and has been successfully used in the studies of the ion beam deposited amorphous diamond(a-D)

  • PDF

TiN증착 조건에 따른 박막의 특성에 대한 실험적 연구 (A study on an experimental basis a special quality character of thin film use in order to TiN a conditioned immersion)

  • 박일수
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.4711-4717
    • /
    • 2011
  • PVD방식에 의한 TiN박막의 형성은 DC와 RF sputtering deposition 방식을 적용할 수 있지만, 플라즈마 생성을 위해 주입된 가스의 이온화율이 떨어져 박막성형 속도가 느려지며, 박막과의 접착력을 높이는 것에도 한계성을 가지고 있다. 이를 개선하기 위해 증착과 동시에 이온빔을 조사하는 이온빔 진공증착 IBAD(Ion beam assisted deposition)를 이용 하게 되면, 코팅 전에 소재 표면을 Ion beam으로 조사하기 때문에 표면cleaning의 효과가 크고, 접착력이 높은 박막을 얻을 수 있다. 또한 고 진공과 낮은 온도에서도 균일한 두께의 고순도의 박막을 얻을 수 있는 이점이 있다.

Linear Ion Beam Applications for Roll-to-Roll Metal Thin Film Coatings on PET Substrates

  • Lee, Seunghun;Kim, Do-Geun
    • Applied Science and Convergence Technology
    • /
    • 제24권5호
    • /
    • pp.162-166
    • /
    • 2015
  • Linear ion beams have been introduced for the ion beam treatments of flexible substrates in roll-to-roll web coating systems. Anode layer linear ion sources (300 mm width) were used to make the linear ion beams. Oxygen ion beams having an ion energy from 200 eV to 800 eV used for the adhesion improvement of Cu thin films on PET substrates. The Cu thin films deposited by a conventional magnetron sputtering on the oxygen ion beam treated PET substrates showed Class 5 adhesion defined by ASTM D3359-97 (tape test). Argon ion beams with 1~3 keV used for the ion beam sputtering deposition process, which aims to control the initial layer before the magnetron sputtering deposition. When the discharge power of the linear ion source is 1.2 kW, static deposition rate of Cu and Ni were 7.4 and $3.5{\AA}/sec$, respectively.

Enhanced Adhesion of Cu Film on the Aluminum Oxide by Applying an Ion-beam-mixd Al Seed Layar

  • 김형진;박재원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.229-229
    • /
    • 2012
  • Adhesion of Copper film on the aluminum oxide layer formed by anodizing an aluminum plate was enhanced by applying ion beam mixing method. Forming an conductive metal layer on the insulating oxide surface without using adhesive epoxy bonds provide metal-PCB(Printed Circuit Board) better thermal conductivities, which are crucial for high power electric device working condition. IBM (Ion beam mixing) process consists of 3 steps; a preliminary deposition of an film, ion beam bombardment, and additional deposition of film with a proper thickness for the application. For the deposition of the films, e-beam evaporation method was used and 70 KeV N-ions were applied for the ion beam bombardment in this work. Adhesions of the interfaces measured by the adhesive tape test and the pull-off test showed an enhancement with the aid of IBM and the adhesion of the ion-beam-mixed films were commercially acceptable. The mixing feature of the atoms near the interface was studied by scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy.

  • PDF

XRD Patterns and Bismuth Sticking Coefficient in $Bi_2Sr_2Ca_nCu_{n+1}O_y(n\geq0)$ Thin Films Fabricated by Ion Beam Sputtering Method

  • Yang, Seung-Ho;Park, Yong-Pil
    • Journal of information and communication convergence engineering
    • /
    • 제4권4호
    • /
    • pp.158-161
    • /
    • 2006
  • [ $Bi_2Sr_2Ca_nCu_{n+1}O_y(n{\geq}0)$ ] thin film is fabricatedvia two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.

빔 위치 관련 제어인자가 집속이온빔 패턴 증착공정에 미치는 영향 (The Influence of Parameters Controlling Beam Position On-Sample During Deposition Patterning Process with Focused Ion Beam)

  • 김준현;송춘삼;김윤제
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.209-216
    • /
    • 2008
  • The application of focused ion beam (FIB) depends on the optimal interaction of the operation parameters between operating parameters which control beam and samples on the stage during the FIB deposition process. This deposition process was investigated systematically in C precursor gas. Under the fine beam conditions (30kV, 40nm beam size, etc), the effect of considered process parameters - dwell time, beam overlap, incident beam angle to tilted surface, minimum frame time and pattern size were investigated from deposition results by the design of experiment. For the process analysis, influence of the parameters on FIB-CVD process was examined with respect to dimensions and constructed shapes of single and multi- patterns. Throughout the single patterning process, optimal conditions were selected. Multi-patterning deposition were presented to show the effect of on-stage parameters. The analysis have provided the sequent beam scan method and the aspect-ratio had the most significant influence for the multi-patterning deposition in the FIB processing. The bitmapped scan method was more efficient than the one-by-one scan type method for obtaining high aspect-ratio (Width/Height > 1) patterns.

Oxygen Ion Beam Assisted Deposition법에 의해 형성된 AC PDP용 MgO 보호막의 특성 연구 (Study of a MgO Protective Layer Deposited with Oxygen Ion Beam Assisted Deposition in an AC PDP)

  • 권상직;이조휘
    • 한국전기전자재료학회논문지
    • /
    • 제20권7호
    • /
    • pp.615-619
    • /
    • 2007
  • MgO layer plays an important role for plasma display panels (PDPs). In this experiment, ion beam assisted deposition (IBAD) methode was uesed to deposit a MgO thin film and the assisting oxygen ion beam energy was varied from 100 eV to 500 eV. In order to investigate the relationship between the secondary electron emission and the defect levels of the MgO layer, we measured the cathodoluminescence (CL) spectra of the MgO thin films, and we analyzed the CL peak intensity and peak transition. The results showed that the assisting ion beam energy played an important role in the peak intensity and the peak transition of the CL spectrum. The properties of MgO thin film were also analyzed using XRD and SEM, these results showed the assisting ion beam energy had direct effect on characteristics of MgO thin film.