• 제목/요약/키워드: ion beam bombardment

검색결과 61건 처리시간 0.024초

Effect of Bias Voltage on the Micro Discharge Characteristics of MgO Film prepared by Unbalanced Magnetron Sputtering

  • Kim, Young-Kee;Park, Jung-Tea;Park, Cha-Soo;Cho, Jung-Soo;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.101-102
    • /
    • 2000
  • The performance of ac plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the surface glow discharge characteristics and some physical properties of MgO thin films prepared by reactive RF planar unbalanced magnetron sputtering in connection with ac PDP. The samples prepared with the de bias voltage of -10V showed lower discharge voltage, lower erosion rate by ion bombardment, higher optic transparency and higher crack resistance in annealing process than those samples prepared by conventional magnetron sputtering or E-beam evaporation.

  • PDF

Hydrogen Behaviors with different introduction methods in SiC-C Films

  • Huang, N.K.;Zou, P.;Liu, J.R.;Zhang, L.
    • 한국진공학회지
    • /
    • 제12권S1호
    • /
    • pp.1-6
    • /
    • 2003
  • SiC-C films were deposited with r. f. magnetron sputtering on substrates followed by argon ion bombardment. These films were then permeated by hydrogen gas under the pressure of $3.23\times10^{7}$ Pa for 3 hours at temperature of 500K or bombarded with hydrogen ion beam at 5 keV and a dose of $1\times10^{18}$ ions/$\textrm{cm}^2$. SIMS, AES and XPS were used to analyze hydrogen related species, chemical bonding states of C, Si as well as contamination oxygen due to hydrogen participation in the SiC-C films in order to study the different behaviors of hydrogen in carbon-carbide films due to different hydrogen introduction. Related mechanism about the effects of hydrogen on the element of the SiC-C films was discussed in this paper.

AC PDP의 MgO 활성화 조건과 그 방전 특성에 관한 연구 (A Study on the Discharge Characteristics and Optimum Activation Conditions of MgO Thin Film in AC POP)

  • 김영기;김석기;박병언;박명주;조정수;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1758-1760
    • /
    • 1998
  • MgO Protecting layer in AC PDP prevents ion bombardment in discharge plasma. The MgO layer also has the additional importance in lowering the firing voltage due to a large secondary electron emission coefficient. Until now, the MgO protecting layer is mainly prepared by E-beam Evaporation. However, the optimum activation manufacturing process of MgO thin film wasn't well known. Therefore in this study, after MgO protecting layer is prepared on dielectric layer by E-beam evaporation and liquid MgO spin coating, we carried out activation process of MgO thin film as a parameter of Temperature, Operating time and Operating pressure. In addition, discharge characteristics are also studied as a parameter of activation conditions.

  • PDF

Ion Beam Modified ppolyimide: A Study of the Irradiation Effect

  • Lee, Y.S.;Lim, K.Y.;Chung, Y.D.;Lee, K.M.;Choi, B.S.;Whang, C.N.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.132-132
    • /
    • 1998
  • Ion bombardment in the keV range is known to induce drastic chemical modifications in organic and inoranic molecular comppounds. A degrading effects in orgainc materials such as the release of ppolymer compponents and the chemistry of the iradiation pprocess have been observed. The work to be described was carried out in order to understand the irradiation effect better. The sampple(ppolyimide : Kappton ) Were irradiated by Ar+, Ne+, H+ ions and electrons (3 keV) to fluence ranging from ~1$\times$1015 to ~1$\times$1017 ions/$cm^2$ at room tempperature. The impplant was usually rastered over an area of a few $cm^2$ . These ion impplantation were carried out in an electron sppectrometer ESCA 5700 (ppHI Ltd) at a residual gas ppressure of ~5$\times$10-10 Torr. X-ray pphotoelectron sppectroscoppy(XppS) measurements were made using a monochromatized Al Ka(1486.6 eV) excitation source. The pphotoemitted electrons were detected by hemisppherical analyser with a ppass energy of 23.5 eV. Core-level binding energies were referenced to the Fermi level. To avoid the charging effect it was used the neutralizer. We studied the irradiation effects on ppolyimide with Ar+, Ne+, He+ ions and electrons by XppS which 추 pprovide detailed information concerning the bonding-induced changes.

  • PDF

불평형 마그네트론 스파터링에 의해 형성된 MgO 박막의 글로우 방전특성에 관한 연구 (A Study on the Glow Discharge Characteristics of MgO thin film prepared by Unbalanced Magnetron Sputtering)

  • 김영기;박정태;고광식;김규섭;박정후;조정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2236-2238
    • /
    • 1999
  • This paper deals with the surface glow discharge characteristics and some physical properties of MgO thin films prepared by RF unbalanced magnetron sputtering(UBMS) in surface discharge type AC PDP. The minimum discharge voltage is obtained for the sample of substrate holder bias voltage -10V. The main factors that improves the discharge characteristics by applied bias voltage is considered to be due to the morphology changes or crystal structure of the MgO thin film by ion bombardment during deposition process Moreover, the anti-sputtering characteristics of MgO thin film by UBMS is more excellent than that of balanced magnetron sputtering(BMS) and E-beam evaporation method.

  • PDF

Effects of surface modification of $Nafion^{(R)}$ Membrane on the Fuel Cell Performance

  • Prasanna, M.;Cho, E.A.;Ha, H.Y.;Hong, S.A.;Oh, I.H.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 추계 학술발표회 논문집
    • /
    • pp.133-138
    • /
    • 2004
  • Proton exchange membrane fuel cell (PEMFC) is considered as a clean and efficient energy conversion det ice for mobile and stationary applications. Anions all the components of the PEMFC, the interface between the electrolyte ,and electrode catalyst plays an important role in determining tile cell performance since the electrochemical reactions take place at the interface in contact with tile reactant gases. Therefore, to increase the interface area and obtain a high-performance PEMFC, surface of the electrolyte membrane was roughened by Ar$^{+}$ beam bombardment. The results imply that by modifying surface of the electrolyte membrane, platinum loading can be reduced significantly without performance loss. To optimize the surface treatment condition, effects of ion dose density on characteristics of the membrane/electrode interface were examined by measuring the cell performance, impedance spectroscopy, and cyclic voltammograms. Surface of the modified membranes were characterized using scanning electron microscopy and FT-IR.R.

  • PDF

이온화 N2 가스 입사를 이용한 SiNx 나노구조 내부의 Si 나노결정 형성 (Nanocrystalline Si formation inside SiNx nanostructures usingionized N2 gas bombardment)

  • 정민철;박용주;신현준;변준석;윤재진;박용섭
    • 한국진공학회지
    • /
    • 제16권6호
    • /
    • pp.474-478
    • /
    • 2007
  • 실리콘 표면에 이온화된 $N_2$ 가스를 입사한 후 어닐링을 통해서 $SiN_x$ 나노구조를 형성하였다. 원자힘 현미경으로 관찰한 결과 이 나노구조의 밀도는 $3\times10^{10}/cm^2$였으며, 가로 크기는 40$\sim$60 nm 이고 높이는 약 15 nm 임을 알 수 있었다. 엑스선광전자 분광기술을 이용하여 이 나노구조의 화학상태를 측정하였는데, 입사하는 이온화된 $N_2$의 단위시간당 양이 증가함에 따라서 화학상태가 $SiN_x$에서 $Si_3N_4\;+\;SiN_x$형태로 변화함을 알 수 있었다. 열처리를 한 시료를 투과전자 현미경으로 측정된 결과는 $SiN_x$ 나노구조를 내부에 Si 나노 결정이 형성된 것을 보여주었다. 광여기 발광특성에서 관찰된 400 nm파장의 스펙트럼은 Si 나노결정의 크기를 고려할 때 나노결정과 $SiN_x$ 나노구조 사이의 계면상태에서 기인한 것으로 생각된다.

초전도 박막선재용 IBAD-MgO 박막 증착 (Deposition of IBAD-MgO for superconducting coated conductor)

  • 하홍수;김호겸;양주생;고락길;김호섭;오상수;송규정;박찬;유상임;주진호;문승현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.282-283
    • /
    • 2005
  • Ion beam assisted deposition(IBAD) technique was used to produce biaxially textured polycrystalline MgO thin films for high critical current YBCO coated conductor. Hastelloy tapes were continuous electropolished with very smooth surface for IBAD-MgO deposition, RMS roughness of Hastelloy tape values below 2 nm and local slope of less than $1^{\circ}$. After the polishing of the tape an amorphous $Y_2O_3$ and $Al_2O_3$ are deposited Biaxially textured MgO was deposited on amorphous layer bye-beam evaporation with a simultaneous bombardment of high energy ions. We had developed the RHEED to measure in-situ biaxial texture of film surface as thin as tens angstrom. And also ex-situ characterization of buffer layers was studied using XRD and SEM. The full-width at half maximum(FWHM) out of plane texture of IBAD-MgO template is $4^{\circ}$.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

AC PDP의 MgO 결정방향성과 증착조건간의 상관관계에 관한 연구 (The relationships between the MgO crystal orientation and the conditions of deposition on AC-PDP)

  • 장진호;장용민;이지훈;조성용;김동현;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.202-203
    • /
    • 2006
  • In the AC PDP, the MgO film is used as electrode protective film. This film must provide excellent ion bombardment protection, high secondary electron emission, and should be high transparent to visible radiation. In this study, we investigated the relations between the crystal orientation and e-beam evaporation process parameters. The crystal orientation of the MgO layer depends on the conditions of deposition. The parameters are the thickness of the MgO film $1000{\AA}-6500{\AA}$, the deposition rate $200{\AA}/min{\sim}440{\AA}/min$, the temperature $150^{\circ}C{\sim}250^{\circ}C$, and the distance between crucible and substrate 11cm ${\sim}$ 14cm. The temperature of substrate and evaporation rate of source material, or deposition rate of the film, are definitely related to the crystal orientation of the MgO thin film. The crystal orientation can be changed by the distance between the target(MgO tablet) and the substrate. However, the crystal orientation is not much affected by the thickness of MgO thin film.

  • PDF