• Title/Summary/Keyword: inviscid

Search Result 326, Processing Time 0.028 seconds

Convergence Acceleration Methods for the Multigrid Navier-Stokes Computation (다중 격자 Wavier-Stokes 해석의 수렴성 증진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk;Choi Yun Ho;Lee Seungsoo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.35-38
    • /
    • 2002
  • The convergence acceleration methods for the compressible Wavier-Stokes equations are studied ,which are multigrid method and implicit preconditioned multistage time stepping method. In this paper, the performance of implicit preconditioning methods are studied for the full-coarsening multigrid methods on the high Reynolds number compressible flow computations. The effect of numerical flux on the convergence are investigated for the inviscid and viscous calculations.

  • PDF

Numerical analysis of a flow field in gas atomization process using a TVD scheme (TVD기법을 이용한 가스 분무 공정의 유동장 해석)

  • Shim Eun Bo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.131-136
    • /
    • 1996
  • The numerical method for the flow field of a gas atomization process is presented. For the analysis of the compressible supersonic jet flow of a gas. an axisymmetric Navier-Stokes equations are solved using a LU-factored upwind method. The MUSCL type TVD scheme is used for the discretization of inviscid flux, whereas Steger-Warming splitting and LU factorization is applied to the implicit operator. For the validation of the present method, we computed the flow field around the simple gas atomizer proposed by Issac. The numerical results has shown excellent agreement with the experimental data.

  • PDF

Seismic Response Analysis of Dam-Reservoir System Considering the Interaction between the Flexible Dam and the Compressible Impounded Water (유연한 댐체와 압축성 유체의 상호작용을 고려한 댐-호소 시스템의 지진 응답해석)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.132-132
    • /
    • 1997
  • The influence of the dam-reservoir interaction on the seismic response of concrete dam is studied. The dam body is assumed to behave elastically and modeled by FEM. The impounded water is assumed to be inviscid and compressible fluid and modeled by BEM. The seismic response of dam-reservoir system is analyzed by coupling two regions : the dam body and reservoir.

  • PDF

Seismic Response Analysis of Dam-Reservoir System Using Hybrid Method (Hybrid 방법에 의한 댐-호소수 계 지진응답해석)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.163-170
    • /
    • 1998
  • The influence of the dam-reservoir interaction on the seismic response of dams is studied. The impounded water is assumed to be inviscid and compressible ideal fluid. Material damping is introduce to simulate the energy loss of wave propagation in the water. The irregular region of the impounded water adjacent to the dam is modeled by boundary element method. The regular region extending to infinity is modeled by the transmitting boundary. The dam body is assumed to behave elastically and modeled by finite element method. The coupled equation of motion is obtained by substructure method.

  • PDF

Application of Multigrid Method for Computing Hypersonic, Equilibrium Flows (다중격자 기법을 적용한 극초음속 평형 유동장 계산)

  • Kim Sung soo;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.23-28
    • /
    • 1999
  • A mutigrid convergence acceleration technique is presented for computing hypersonic inviscid and viscous flows in equilibrium state. The governing equations are solved using an explicit Runge-Kutta method. Curve fitting data in NASA Reference Publication 1181, 1260 are used to calculate equilibrium properties. In order to ensure stability, damped prolongation and modified implicit residual smoothing are proposed. Blunt body test cases are presented to demonstrate the robustness and the efficiency in performance of the proposed methods

  • PDF

Preconditioned Multistage time stepping for the Multigrid Navier-Stokes Solver (다중 격자 Navier-Stokes 해석을 위한 예조건화된 다단계 시간 전진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk;Choi Yun Ho;Lee Seungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.59-64
    • /
    • 2002
  • In this paper, the preconditioned multistage time stepping methods which are popular multigrid smoothers is implemented for the compressible Navier-Stokes calculation with full-coarsening multigrid method. The convergence characteristic of the point-Jacobi and Alternating direction line Jacobi(DDADI) preconditioners are studied. The performance of 2nd order upwind numerical fluxes such as 2nd order upwind TVD scheme and MUSCL-type linear reconstruction scheme are compared in the inviscid and viscous turbulent flow caculations.

  • PDF

ON THE IMPROVED INSTABILITY REGION FOR THE CIRCULAR RAYLEIGH PROBLEM OF HYDRODYNAMIC STABILITY

  • G. CHANDRASHEKHAR;A. VENKATALAXMI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.155-165
    • /
    • 2023
  • We consider circular Rayleigh problem of hydrodynamic stability which deals with linear stability of axial flows of an incompressible iniviscid homogeneous fluid to axisymmetric disturbances. For this problem, we obtained two parabolic instability regions which intersect with Batchelor and Gill semi-circle under some condition. This has been illustrated with examples. Also, we derived upper bound for the amplification factor.

Effects of Angles of Attack and Throttling Conditions on Supersonic Inlet Buzz

  • NamKoung, Hyuck-Joon;Hong, Woo-Ram;Kim, Jung-Min;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.296-306
    • /
    • 2012
  • A series of numerical simulations are carried out to analyze a supersonic inlet buzz, which is an unsteady pressure oscillation phenomenon around a supersonic inlet. A simple but efficient geometry, experimentally adopted by Nagashima, is chosen for the analysis of unsteady flow physics. Among the two sets of simulations considered in this study, the effects of various throttling conditions are firstly examined. It is seen that the major physical characteristic of the inlet buzz can be obtained by inviscid computations only and the computed flow patterns inside and around the inlet are qualitatively consistent with the experimental observations. The dominant frequency of the inlet buzz increases as throttle area decreases, and the computed frequency is approximately 60Hz or 15% lower than the experimental data, but interestingly, this gap is constant for all the test cases and shock structures are similar. Secondly, inviscid calculations are performed to examine the effect regarding angle of attack. It is found that patterns of pressure oscillation histories and distortion due to asymmetric (or three-dimensional) shock structures are substantially affected by angle of attack. The dominant frequency of the inlet buzz, however, does not change noticeably even in regards to a wide range of angle of attacks.

PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS (정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측)

  • Jo, J.H.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

Boundary Layer Correction of Hypersonic Wind-tunnel Nozzle Designed by the Methods of Characteristics (특성곡선 해법 설계 극초음속 노즐의 경계층 보정)

  • Kim, So-Yeon;Kim, Sung Don;Jeung, In-Seuck;Lee, Jong-Kuk;Choi, Jeong-Yol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1028-1036
    • /
    • 2014
  • A design procedure is established for hypersonic nozzles by using MOC(Method of Characteristics) and CFD. The inviscid nozzle contour is designed by MOC, then BLC(Boundary Layer Correction) is made by evaluating the boundary layer thickness from viscous CFD analysis. By comparing various definitions of the boundary layer thicknesses, it seems that the boundary layer thickness of 95% speed of the maximum value at the cross section satisfies best the design Mach number. Design procedure is as follow; MOC design, grid generation, inviscid analysis, viscous analysis, BLC and viscous analysis for confirmation and post-processing. All procedures are made automatically by using the batch processing.