• Title/Summary/Keyword: inviscid

Search Result 326, Processing Time 0.026 seconds

Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with the developed MPS program, significant differences in both growing patters and developing speeds are observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger initial disturbances, quite different patterns of RTI-development are observed compared to the small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by increased surface tension become less effective.

Matching inviscid and boundary layer method for incompressible and compressible flows (비압축성과 압축성 유동에 있어서 비점성 유동과 경계층 유동의 결합)

  • Sohn, Chang-Hyun;Moon, Su-Yeon;Lee, Jeong-Yun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1966-1971
    • /
    • 2003
  • Matching inviscid and boundary layer methods are developed for hypersonic flow with thick boundray layer. The new equations match all the boundary layer properties with a variation in the inviscid solution near the edge, except for the normal velocity. Computational comparison are performed for incompressible and compressible flows over a flat plate. Results from the present method are compared with Navier-Stokes solutions. The present results are in good agreement with Navier-Stokes solutions. They show that the new technique can provide improved heating rates and skin friction predictions for preliminary design of vehicles where shear layers and entropy layer swallowing are important.

  • PDF

An Aerodynamic Performance Analysis of the Low-Speed Airfoils in Seperated Flow Field (박리유동장에서 저속 익형의 공기역학적 성능해석)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.153-168
    • /
    • 1995
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the subsonic airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid-incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid-compressible flow analysis. The Goradia's integral method and the Truckenbrodt integral method are adopted for the boundary layer analysis of the laminar flow and the turbulent flow respectively. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. And the analysis of the seperated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered and its geometry expressed by the formula of Summey & Smith when no seperation occurs. A computational efficiency is verified by the comparison of the computational results with experimental data and by the shorter execution time.

  • PDF

Heat Transfer and Solidification in the Inviscid Stagnation Flow (비점성 정체 유동 하에서의 응고와 열전달)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The instantaneous location of the solid-liquid interface is fixed for all times by a coordinate transformation. Finite difference method is used to obtain the solution of the unsteady problem, and the growth rate of solid and the transient heat transfer from the surfaces of solid are investigated. The transient solution is dependent on the three dimensionless parameters, but the final steady state is determined by only one parameter of temperature ratio/conductivity ratio. It is observed that the instantaneous heat flux at the surface of solid can be obtained with sufficient accuracy by measuring the thickness of the solid or vice versa.

  • PDF

A numerical Analysis on Three-Dimensional Inviscid Transonic Cascade Flow (3차원 비점성 천음속 익렬 유동에 관한 수치해석적 연구)

  • 이훈구;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.336-347
    • /
    • 1992
  • The three dimensional inviscid transonic cascade flow was investigated numerically, incorporation a four stage Runge-Kutta integration method proposed by Jameson. Time marching to the steady state was accelerated by using optimum time step and enthalpy damping. In describing the boundary conditions at inlet and outlet, Riemann invariants are considered. By adding a second and a fourth order artificial viscocities, the numerical instability due to the propagation of undamped disturbance or the rapid change of state near the shock has been prevented. The numerical results for are bump cascade, cambered two dimensional turbine cascade and three dimensional stator cascade agreed reasonably well with previous results. It has been known that the accuracy of the solution depended a lot on the modeling of the leading or trailing edge.

Numerical Analysis of Nonequilibrium Chemically Reacting Inviscid flow over Blunt-bodies Using Upwind Method (Upwind 방법을 이용한 무딘물체 주위의 화학적 비평형 비점성 유동장의 수치 해석)

  • Seo Jeong Il;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.99-105
    • /
    • 1997
  • A finite-difference method based on conservative supra characteristic method type upwind flux difference splitting has been developed to study the nonequilibrium chemically reacting inviscid flow. For nonequilibrium air, NS-1 species equations were strongly coupled with flowfield equations through convection and species production terms. Inviscid nonequilibrium chemically reacting air mixture flows over Blunt-body were solved to demonstrate the capability of the current method. At low altitude flight conditions the nonequilibrium air models predicted almost the same temperature, density and pressure behind the shock as equilibrium flow: however, at high altitudes they showed substantial differences due to nonequilibrium chemistry effect. The new nonequilibrium chemically reacting upwind flux difference splitting mettled can be extended to viscous flow and multi-dimensional flow conditions.

  • PDF

A theoretical analysis on the inviscid stagnation-flow solidification problem (비점성 정체 유동 응고 문제에 대한 이론적 해석)

  • 유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The solution of dimensionless governing equations is determined by the three dimensionless parameters of (temperature ratio/conductivity ratio), Stefan number, and diffusi-vity ratio. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The equilibrium state is dependent on (temperature ratio/conductivity ratio), but is independent of Stefan number and diffusivity ratio. The effect of fluid flow on the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state, and the characteristics of the solidification process for all the dimensionless parameters are elucidated.

  • PDF

BOUNDS ON THE GROWTH RATE FOR THE KUO PROBLEM

  • S. LAVANYA;V. GANESH;G. VENKATA RAMANA REDDY
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.363-372
    • /
    • 2023
  • We consider Kuo problem of hydrodynamic stability which deals with incompressible, inviscid, parallel shear flows in the 𝛽-plane. For this problem, we derived instability region without any approximations and which intersects with Howard semi-circle region under certain condition. Also, we derived upper bound for growth rate and amplification factor of an unstable mode and proved Howard's conjecture.