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VORTEX CURVATURE EQUATIONS ON VORTEX
SURFACES

HeeE CouL Pak*

ABSTRACT. The aim of this work is to derive a partial differential
equation that explains the movement of vortex lines on a vortex
trajectory surface in a three dimensional incompressible inviscid
flow.

1. Main interests

This paper deals with the three dimensional incompressible inviscid
flows governed by the Euler-vorticity equations;

(1.1) %J: = (w,V)u — (4, V)w = —[u,w| = —Lyw,
div u = 0,
w := curl u,

where (u, V)wy, 1= Zg’zl U %—“;’: (k =1,2,3), and the symbol [, | repre-
sents the Lie bracket and £,w is the Lie derivative of the worticity field
w = (w1,ws,ws) with respect to the velocity field u = (u1,u2,us) of a
given fluid flow. Associated with the Euler equations, we have a system
of ordinary differential equations

(1.2) ;X(aat) = u(X(a,1),1),
X(a,0) = a,

which defines particle trajectory flows X (a,t) along the velocity u, start-
ing from the initial position a.
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By virtue of the Biot-Savart’s law, the velocity u(z, t) can be retrieved
by the vorticity w(z,t) as follows:

(1.3) u(z, t) = 4177/Rs Kvywl‘) x w(x—y,t)] dy,

where x denotes the cross product between 3-D vectors. So the vorticity
flow is one of the essential factors for the understanding of the fluid
flow. The equation (1.1) illustrates that at time ¢, the vorticity w(x,t)
at the position £ moves in the opposite direction to the Lie derivative

Ly pw(-t):
o1
Eu(a,t)w(a7 t) = }lllg% E [(Y—h)*w(Yh(a7 t)a t) - w(aa t)] )

where {Y;} is a one-parameter local group of local diffeomorphisms with
respect to the velocity field u(-,t) at time ¢:

(14) { D yifat) = ulVi(a 1) 1),
Yo(a,t) = a, a€eR3

and the symbol (Y_j).w represents the push-forward along the flow Y_:
(Yop)sw(Yn(a,t),t) = Dy, (a)Y-n(w). Also, we introduce another one-
parameter local group {Zs} of local diffeomorphisms with respect to the
vorticity field w(-,t) at time :

(15) { %Zs(a’t) = W(Zs((l,t),t),
Zo(a,t) = a, a € R3.

Since, for vector fields, the Lie derivative and the Lie bracket coincide
as indicated in (1.1), the temporal movement of the vorticity w(z, )
remains constant when the flow {Ys} of the velocity field u(-,¢) and the
flow {Z,} of the vorticity field w(-,t) commute.

On the other hand, we can also represent the vorticity equations (1.1)
via the material derivative as

D Ow

This formulation illustrates that the vortex lines and vortex sheets! in-
duced from the vorticity w move with the Euler flow.

'Our definition of vortex sheet is a surface that is tangent to the vorticity vector
at each of its points.
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We choose a € R? with w(Z4(a,0),0) # 0 for all -1 < s < 1, and
select a vortex line

C=1{Za,0) €R>: —1 <5 <1}.2
Then we employ a parametric surface S as
S ={X(Zs(a,0),t): -1 <s<1,0<t<T"},

where T* € (0,00] is the first blow-up time for the Euler flow. The
surface S permits self-intersections and non-orientablity?.
Let a(s,t) == X(Zs(a,0),t). Then from the equation (1.2), we get

(17) aa(sat) :U(OJ(S,t),t)
and we also notice that
0

1. — = t .

(18) —— a(s, 1) = w(als, ), 1)

In fact, from the well-known vorticity transport formula
w(X(a,t),t) = Vo X(a,t)w(a,0),

we have
2oc(s t) = VoX(Zs(a,0) t)gZ (a,0)
88 ) - a S 9 Y 88 S 9
= VaX(Zs(a7 0)7 t) w(Zs(aa 0)7 0)
= w(X(ZS(a7 0)7 t)? t) = OJ(O&(S, t)? t)'
The notations ' = % and = % will be used throughout the pa-

per. Also, all flows are assumed to possess enough temporal and spacial
regularities.

2. An evolution equation for geodesic curvature

For each t, the regular curve «(t,-) can be reparametrized in a way
that it has unit speed, and s’ represents its arc-length parameter with
respect to the variable s at time ¢. Let T(s,t) be the unit tangent vector
to the curve a(-,t) and define the unit vector U(s,t) as

. w(s,t) xu(s,t)
U = e < us )

2The choice of the interval (—1,1) simply means it contains the zero point for
convenience. The interval can be chosen to be the whole real line R.
3The surface S is called a vortex (trajectory) surface.
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The vector U(s, t) is orthogonal to the tangent plane 7),S at p = a(s, ).
Finally, we take N := U x T. Then {T, N, U} constitutes a frame field
on R? and for a fixed t, we have

D 1 D
2.1 M —kN= T
(21) dst Fg /| ds ™’
D 1 D
2.2 “N=—x,T=- )
(2:2) dst "9 /| ds

On the other hand, since each vector u(a,t) is on the tangent space
T,S (p = (s, t)), the Euler equation (1.7) can be written as

(2.3) %a =u(a,t) ;=N + (T
for some scalar functions 7 and . We note that
1
C(sv t) - m < W(Ck(s, t): t)v u(a(s, t)? t) >p -

We now state our main theorem:

THEOREM 2.1. The vorticity on a vortex trajectory surface S for the
Euler flow (1.1) is represented by an indefinite integral of the form:

(2.4) lw(a(s,t),t)] = /S e~ Jr mondr ¢ (r,t)dr.

The geodesic curvature r, and the coordinate functions ¢, n in (2.4)
satisfy a nonlinear evolution equation with respect to ry:
Kg — ANgn — (Ogkg + (K — /@5)77 =0,
where we set %f)g = ANgt, ﬁ% := 04t and K represents the Gaussian
curvature on the surface S.
Proof. From the fact that
a,, 1 , D, D
—ld|=—<ad,—a >,=<T,— (T N) >
s | || ds b als(C +1N) >p
=< T, (¢ —|a/|kgn)T >
= CI - ‘a/|”g777
we get the first order linear ODE with respect to |o/(-, )| for any ¢, and
its solutions can be represented by

o (5,0)] = [w(al-t),1)] = / S B R ) di,
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Next, we have
D (O« D
2 (50) = RN +CT) = 0 4 DN + (¢ = rg )T

From the symmetric condition dg %‘;‘ %%—2‘ together with the fact that

D (0o , : , D
Z(Z22) = =(o|T) = || T =T
dt<8s> dt(\oa! ) = [o/|T + o[ T,

we have

D 1

. —T =
B aT

(¢ = kgnla!| = [T + (o + yCla/ )N
We now consider —N. For it, we can display it as

tN =< NT>pT+< N,N>pN,

d dt dt
where < -, - >, is the inner product on the tangent plane 7,,S. It is
obvious to have < %N, N >,= 0, and we can also see that

D
< —N, T >
a- - 7F

D

= <NT7RC—@Wﬂ—M®T+m%w¢m%N >p

/

= =50 = fa

From this we obtain
,rll
2. N T.
20 = ()

Now we will make a use of the following identity:

DD DD Jda O

where K is the Gaussian curvature on the surface S. We will start
with the computations of %dQN and N. From the equation (2.1)
together with (2.5), we have

DD

—__N=

dt ds
(2.8) = — (Kglo/| — K20l | + kgC')T — kg(1] + kgCl/|)N

. D
— (/{g|a'\ + /‘ig|0/‘) T — /<a9|0/\%T



368 Hee Chul Pak

The equation (2.6) together with

(22
7 (@) = (e i) (e ) 2

) yields

(2.9) = (mgg“ + o |> T — kg(n + KgCld/|)N

The facts that aa = ds do — |o/|T and =nN + (T lead to
Ja  Oa

2.1 — X = N = —|d/|nT.

(2.10) (5 =55 ) <N =-lah

Taking the equations (2.7) through (2.10) together, we derive the non-
linear evolution equation

(2.11) PR S ) — w2+ Kn=0.
RN || 7

=2z = Ag and Lai = Og4, (2.11) can

o]

With the help of the notation
be rewritten as

9?2
a(s7)
Kg — Dgin — (D5t kg)¢ — Kim + Kn = 0.

The proof is now completed. ]
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