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VORTEX CURVATURE EQUATIONS ON VORTEX

SURFACES

Hee Chul Pak*

Abstract. The aim of this work is to derive a partial differential
equation that explains the movement of vortex lines on a vortex
trajectory surface in a three dimensional incompressible inviscid
flow.

1. Main interests

This paper deals with the three dimensional incompressible inviscid
flows governed by the Euler-vorticity equations;

∂ω

∂t
= (ω,∇)u− (u,∇)ω = −[u, ω] = −Luω,(1.1)

div u = 0,

ω := curl u,

where (u,∇)ωk :=
∑3

i=1 ui
∂ωk
∂xi

(k = 1, 2, 3), and the symbol [ , ] repre-
sents the Lie bracket and Luω is the Lie derivative of the vorticity field
ω = (ω1, ω2, ω3) with respect to the velocity field u = (u1, u2, u3) of a
given fluid flow. Associated with the Euler equations, we have a system
of ordinary differential equations{

∂

∂t
X(a, t) = u(X(a, t), t),

X(a, 0) = a,
(1.2)

which defines particle trajectory flows X(a, t) along the velocity u, start-
ing from the initial position a.
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By virtue of the Biot-Savart’s law, the velocity u(x, t) can be retrieved
by the vorticity ω(x, t) as follows:

u(x, t) =
1

4π

∫
R3

[(
∇y

1

|y|

)
× ω(x− y, t)

]
dy,(1.3)

where × denotes the cross product between 3-D vectors. So the vorticity
flow is one of the essential factors for the understanding of the fluid
flow. The equation (1.1) illustrates that at time t, the vorticity ω(x, t)
at the position x moves in the opposite direction to the Lie derivative
Lu(·,t)ω(·, t):

Lu(a,t)ω(a, t) := lim
h→0

1

h
[(Y−h)∗ω(Yh(a, t), t)− ω(a, t)] ,

where {Ys} is a one-parameter local group of local diffeomorphisms with
respect to the velocity field u(·, t) at time t:{

∂

∂s
Ys(a, t) = u(Ys(a, t), t),

Y0(a, t) = a, a ∈ R3
(1.4)

and the symbol (Y−h)∗ω represents the push-forward along the flow Y−h:
(Y−h)∗ω(Yh(a, t), t) = DYh(a,t)Y−h(ω). Also, we introduce another one-
parameter local group {Zs} of local diffeomorphisms with respect to the
vorticity field ω(·, t) at time t:{

∂

∂s
Zs(a, t) = ω(Zs(a, t), t),

Z0(a, t) = a, a ∈ R3.
(1.5)

Since, for vector fields, the Lie derivative and the Lie bracket coincide
as indicated in (1.1), the temporal movement of the vorticity ω(x, ·)
remains constant when the flow {Ys} of the velocity field u(·, t) and the
flow {Zs} of the vorticity field ω(·, t) commute.

On the other hand, we can also represent the vorticity equations (1.1)
via the material derivative as

D

Dt
ω :=

∂ω

∂t
+ (u,∇)ω = (ω,∇)u.(1.6)

This formulation illustrates that the vortex lines and vortex sheets1 in-
duced from the vorticity ω move with the Euler flow.

1Our definition of vortex sheet is a surface that is tangent to the vorticity vector
at each of its points.
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We choose a ∈ R3 with ω(Zs(a, 0), 0) ̸= 0 for all −1 < s < 1, and
select a vortex line

C = {Zs(a, 0) ∈ R3 : −1 < s < 1}.2

Then we employ a parametric surface S as

S := {X(Zs(a, 0), t) : −1 < s < 1, 0 ≤ t < T ∗},
where T ∗ ∈ (0,∞] is the first blow-up time for the Euler flow. The
surface S permits self-intersections and non-orientablity3.

Let α(s, t) := X(Zs(a, 0), t). Then from the equation (1.2), we get

∂

∂t
α(s, t) = u(α(s, t), t)(1.7)

and we also notice that
∂

∂s
α(s, t) = ω(α(s, t), t).(1.8)

In fact, from the well-known vorticity transport formula

ω(X(a, t), t) = ∇aX(a, t)ω(a, 0),

we have
∂

∂s
α(s, t) = ∇aX(Zs(a, 0), t)

∂

∂s
Zs(a, 0)

= ∇aX(Zs(a, 0), t)ω(Zs(a, 0), 0)

= ω(X(Zs(a, 0), t), t) = ω(α(s, t), t).

The notations ′ ≡ ∂
∂s and ˙ ≡ ∂

∂t will be used throughout the pa-
per. Also, all flows are assumed to possess enough temporal and spacial
regularities.

2. An evolution equation for geodesic curvature

For each t, the regular curve α(t, ·) can be reparametrized in a way
that it has unit speed, and st represents its arc-length parameter with
respect to the variable s at time t. Let T(s, t) be the unit tangent vector
to the curve α(·, t) and define the unit vector U(s, t) as

U(s, t) :=
ω(s, t)× u(s, t)

|ω(s, t)× u(s, t)|
.

2The choice of the interval (−1, 1) simply means it contains the zero point for
convenience. The interval can be chosen to be the whole real line R.

3The surface S is called a vortex (trajectory) surface.
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The vector U(s, t) is orthogonal to the tangent plane TpS at p = α(s, t).
Finally, we take N := U×T. Then {T,N,U} constitutes a frame field
on R3 and for a fixed t, we have

D

dst
T = κgN =

1

|α′|
D

ds
T,(2.1)

D

dst
N = −κgT =

1

|α′|
D

ds
N.(2.2)

On the other hand, since each vector u(α, t) is on the tangent space
TpS (p = α(s, t)), the Euler equation (1.7) can be written as

∂

∂t
α = u(α, t) := ηN+ ζT(2.3)

for some scalar functions η and ζ. We note that

ζ(s, t) =
1

|α′|
< ω(α(s, t), t), u(α(s, t), t) >p .

We now state our main theorem:

Theorem 2.1. The vorticity on a vortex trajectory surface S for the
Euler flow (1.1) is represented by an indefinite integral of the form:

|ω(α(s, t), t)| =
∫ s

e−
∫ s
r κgη dr̄ ζ ′(r, t) dr.(2.4)

The geodesic curvature κg and the coordinate functions ζ, η in (2.4)
satisfy a nonlinear evolution equation with respect to κg:

κ̇g −△stη − ζ ∂stκg + (K − κ2g) η = 0,

where we set ∂2

∂(st)2
:= △st ,

1
|α′|

∂
∂s := ∂st and K represents the Gaussian

curvature on the surface S.

Proof. From the fact that

∂

∂s
|α′| = 1

|α′|
< α′,

D

ds
α′ >p =< T,

D

ds
(ζT+ ηN) >p

=< T, (ζ ′ − |α′|κgη)T >p

= ζ ′ − |α′|κgη,

we get the first order linear ODE with respect to |α′(·, t)| for any t, and
its solutions can be represented by

|α′(s, t)| = |ω(α(·, t), t)| =
∫ s

e−
∫ s
r κgη dr̄ ζ ′(r, t) dr.
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Next, we have

D

ds

(
∂α

∂t

)
=

D

ds
(ηN+ ζT) = (η′ + κgζ|α′|)N+ (ζ ′ − κg η |α′|)T.

From the symmetric condition D
ds

∂α
∂t = D

dt
∂α
∂s together with the fact that

D

dt

(
∂α

∂s

)
=

D

dt
(|α′|T) = ˙|α′|T+ |α′|D

dt
T,

we have

D

dt
T =

1

|α′|

[
(ζ ′ − κgη|α′| − ˙|α′|)T+ (η′ + κgζ|α′|)N

]
.(2.5)

We now consider D
dtN. For it, we can display it as

D

dt
N =<

D

dt
N,T >p T+ <

D

dt
N,N >p N,

where < ·, · >p is the inner product on the tangent plane TpS. It is

obvious to have < D
dtN,N >p= 0, and we can also see that

<
D

dt
N,T >p

= − < N,
D

dt
T >p

= − < N,
1

|α′|

[
(ζ ′ − κgη|α′| − ˙|α′|)T+ (η′ + κgζ|α′|)N

]
>p

= −κgζ −
η′

|α′|
.

From this we obtain

D

dt
N = −

(
κgζ +

η′

|α′|

)
T.(2.6)

Now we will make a use of the following identity:

D

dt

D

ds
N− D

ds

D

dt
N = K

(
∂α

∂s
× ∂α

∂t

)
×N,(2.7)

where K is the Gaussian curvature on the surface S. We will start
with the computations of D

dt
D
dsN and D

ds
D
dtN. From the equation (2.1)

together with (2.5), we have

D

dt

D

ds
N =−

(
κ̇g|α′|+ κg ˙|α′|

)
T− κg|α′|D

dt
T

=− (κ̇g|α′| − κ2gη|α′|+ kgζ
′)T− κg(η

′ + κgζ|α′|)N.(2.8)



368 Hee Chul Pak

The equation (2.6) together with (2.2) yields

D

ds

(
D

dt
N

)
= −

(
κgζ +

η′

|α′|

)′
T−

(
κgζ +

η′

|α′|

)
D

ds
T

= −
(
κgζ +

η′

|α′|

)′
T− κg(η

′ + κgζ|α′|)N.(2.9)

The facts that ∂α
∂s = dst

ds
dα
dst = |α′|T and ∂α

∂t = ηN+ ζT lead to(
∂α

∂s
× ∂α

∂t

)
×N = −|α′|ηT.(2.10)

Taking the equations (2.7) through (2.10) together, we derive the non-
linear evolution equation

κ̇g −
1

|α′|

(
η′

|α′|

)′
−

κ′g
|α′|

ζ − κ2gη +Kη = 0.(2.11)

With the help of the notation ∂2

∂(st)2
≡ △st and 1

|α′|
∂
∂s = ∂st , (2.11) can

be rewritten as

κ̇g −△stη − (∂stκg)ζ − κ2gη +Kη = 0.

The proof is now completed.
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