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BOUNDS ON THE GROWTH RATE FOR THE KUO

PROBLEM

S. LAVANYA∗, V. GANESH, G. VENKATA RAMANA REDDY

Abstract. We consider Kuo problem of hydrodynamic stability which

deals with incompressible, inviscid, parallel shear flows in the β-plane. For
this problem, we derived instability region without any approximations and

which intersects with Howard semi-circle region under certain condition.

Also, we derived upper bound for growth rate and amplification factor of
an unstable mode and proved Howard’s conjecture.
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1. Introduction

Kuo problem of hydrodynamic stability deals with incompressible, in-
viscid, parallel shear flows in the β-plane. When the Coriolis force become zero
then it reduces to standard Rayleigh problem of hydrodynamic stability. For
this problem, [8] derived Rayleigh inflexion point theorem . [7] derived semi-
circle theorem in the upper half of cr − ci plane whose diameter is same as
range of the basic velocity profile. [10] extended and derived an instability region
which includes Cariolis force. [15] deduced semi-circle for zonal shear flows. [12]
derived a bound for estimate for the growth rate of an unstable mode. [18]
derived growth rate of an unstable mode. [2] proved Howard’s conjecture for
standard Rayleigh problem, [18] proved Howard’s conjecture for the baroclinic
zonal flows. [15] derived an upper bound for the growth rate of a unstable mode
for free surface. [1] derived two parabolic instability regions under some approx-
imations for the standard Rayleigh problem. [9] extended their work to Kuo
problem and derived two parabolic instability regions under some approxima-
tions. [13]obtained a sufficient condition for stability. [17] derived a parabolic
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instability region which depend on minimum of the basic velocity should be pos-
itive for Kuo problem. [11] observed that the time spend by the wave and phase
speed are related. Hence it is necessary to know the location of eigen values.
Howard semi-circle depends on the basic velocity profile only. It does not give
boundedness of the growth rate of an unstable mode. However, boundedness
of growth rate is proved here. Amplification factor tends to zero as wave num-
ber tends to zero is known as Howard’s conjecture(cf. [7]). But it is likelihood
that growth rate tends to zero as wave number tends to infinity. [3], [14] proved
Howard’s conjecture for Taylor Goldstein problem, [4] proved for extended Tay-
lor Goldstein problem. [6], [12] derived estimates for growth rate of an unstable
mode. In this paper, we derived a parabolic instability region which does not
depend on any approximations like [9], [17]. New parabolic instability region
depends on shear term, wave number apart from minimum and maximum of
velocity profile. New instability region is unbounded and it will be useful if they
intersect with Howard semi-circle. We have derived condition for the parabolic
instability region intersect with Howard semi-circle region. Also, we derived an
estimate for the growth rate and upper bound for the amplification factor of an
unstable mode and proved Howard’s conjecture namely, growth rate approaches
to zero as wave number approaches to infinity.

2. Kuo Problem:

Kuo problem [cf. [8]] of hydrodynamic stability is given by

ϕ′′ −
[
U ′′ − β

U − c
+ k2

]
ϕ = 0, (1)

with boundary conditions

ϕ (z1) = 0 = ϕ (z2) . (2)

Here U is the basic velocity profile, ϕ is the complex eigen function, k > 0 is the
wave number , c is the complex phase velocity and β is the derivative of Cariolis
force in the latitudinal direction.

Using the transformation ϕ = (U − c)
1
2φ, then ( 1), ( 2) becomes

[(U − c)φ′]
′ − k2(U − c)φ−

(
U ′′

2
− β

)
φ−

(U ′)
2

4

(U − c)
φ = 0, (3)

with boundary conditions

φ (z1) = 0 = φ (z2) . (4)

Theorem 2.1. For an unstable mode ci > 0, we have ci
2 ≤ λ [cr + Umax], where

λ =
|U ′|2 max

2 |3Umin + Umax|
[

π2

(z2−z1)
2 + k2

] and Um =
Umin + Umax

2
.
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Proof. Multiplying ( 3) with φ∗, integrating using by parts and applying ( 4),
we get

∫ z2

z1

(U − c)
[
|φ′|2 + k2|φ|2

]
dz +

∫ z2

z1

(
U ′′

2
− β

)
|φ|2dz

+
1

4

∫ z2

z1

(U ′)
2

(U − c)
|φ|2dz = 0.

Equating real parts, we get∫ z2

z1

(U − cr)
[
|φ′|2 + k2|φ|2

]
dz +

∫ z2

z1

(
U ′′

2
− β

)
|φ|2dz

+
1

4

∫ z2

z1

(U ′)
2

|U − c|2
(U − cr) |φ|2dz = 0.

(5)

Equating imaginary parts, we get

−ci

∫ z2

z1

[
|φ′|2 + k2|φ|2

]
dz +

ci
4

∫ z2

z1

(U ′)
2

|U − c|2
|φ|2dz = 0. (6)

Multiplying ( 6) with (cr+Um)
ci

and subtracting from ( 5), we get∫ z2

z1

(U + Um)
[
|φ′|2 + k2|φ|2

]
dz +

∫ z2

z1

(
U ′′

2
− β

)
|φ|2dz

+
1

4

∫ z2

z1

(U ′)
2

|U − c|2
(U − 2cr − Um) |φ|2dz = 0.

(7)

Multiplying ( 6) with
(

Umax−Umin

2ci

)
and adding with ( 5), we get∫ z2

z1

(
U − cr −

Umax

2
+

Umin

2

)[∣∣∣φ′
∣∣∣2 + k2 |φ|2

]
dz

+

∫ z2

z1

(
U ′′

2
− β

)
|φ|2 dz

+
1

4

∫ z2

z1

(U ′)
2

|U − c|2

(
U − cr +

Umax

2
− Umin

2

)
|φ|2 dz = 0.

Since Umin < cr < Umax, and
(
U − cr − Umax

2 + Umin

2

)
< 0 and hence dropping

the first term, we get∫ z2

z1

(
U ′′

2
− β

)
|φ|2dz ≥ 1

4

∫ z2

z1

(U ′)
2

|U − c|2

(
cr − U +

Umin

2
− Umax

2

)
|φ|2dz.

(8)
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Substituting ( 8) in ( 7), we get ∫ z2

z1

(U + Um)
[
|φ′|2 + k2|φ|2

]
dz

+
1

4

∫ z2

z1

(U ′)
2

|U − c|2

(
−cr − Um +

Umin

2
− Umax

2

)
|φ|2dz ≤ 0.

Since 1
|U−c|2 ≤ 1

c2i
and Um = Umin+Umax

2 and using Rayleigh-Ritz inequality,∫ z2

z1

∣∣∣ϕ′
∣∣∣2 dz ≥ π2

(z2 − z1)
2

∫ z2

z1

|ϕ|2 dz,

we get

c2i ≤ λ [cr + Umax] , (9)

where

λ =
|U ′|2 max

2 |3Umin + Umax|
[

π2

(z2−z1)
2 + k2

] .
□

Unlike [9], [17], newly derived parabolic instability region does not depend
on any approximations. Now we shall check the condition for intersection with
Howard semi circle.

Remark 2.1. The result is true for constant basic velocity profile and exchange
flows also. Even if the minimum velocity is zero, the result is true. The result
is true for all basic velocity profiles.

Theorem 2.2. If λ < λc, where λc = (Umin + 3Umax)−2
√
2U2

max + 2UminUmax

then the parabola c2i ≤ λ [cr + Umax] intersect Howard semi circle.

Proof. Howard semi circle [cf. [7]] is given by[
cr −

Umin + Umax

2

]2
+ c2i ≤

[
Umax − Umin

2

]2
. (10)

Substituting ( 9) in ( 10) we get

c2r + [λ− Umin − Umax] cr + [UminUmax + λUmax] ≤ 0.

For real roots, the discriminant part of the above equation should be greater
than or equal to zero and hence we have

λ2 − (2Umin + 6Umax)λ+ [Umax − Umin]
2 ≥ 0.

Solving for λ, and λ with positive sign implies cr < Umin and hence, we have

λc = (Umin + 3Umax)− 2
√
2U2

max + 2UminUmax.

Hence if λ < λc, where λc = (Umin + 3Umax)− 2
√
2U2

max + 2UminUmax then the
parabola given in ( 9) will intersect semi-circle given in ( 10). □
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Now we shall illustrate the example.

Example 1. Let us consider the exchange flow
U =

[
z − 1

2

]
, z ∈ [0, 1], as considered in [16], [5]. In this case

Umin = −0.5, Umax = 0.5, λ = 0.0506, λc = 1. Since λ < λc, the parabola

ci
2 ≤ 0.0506 [cr + 0.5], intersects with Howard semi-circle.

Figure 1. cr vsci (Intersection of parabola with Howard semi circle)

Figure 2. cr vs ci ( parabolic instability region for different
values of k)
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From fig.2, it is clear that as wave number k increases, the instability region
is further reduced. Example 1 is not valid for [17] because minimum velocity is
not positive.

Example 2. Let us consider the flow U = sin z , z = [1, 2] . In this case

Umin = 0.8415, Umax = 0.9975, λ = 0.00298804, λc = 0.003175.

Since λ < λc, the parabola ci
2 ≤ 0.002988 [cr + 0.9975] , intersects with

Howard’s semi-circle.

Figure 3. cr vsci (Intersection of parabolas with Howard semi circle)

Theorem 2.3. Upper bounds for the growth rate is given by

kci ≤
(U ′′ − β)max

2k
[

π2

(z2−z1)
2k2 + 1

] .
Proof. Multiplying ( 1) with ϕ∗, integrating and applying ( 2),we get∫ z2

z1

[
|ϕ′|2 + k2|ϕ|2

]
dz +

∫ z2

z1

U ′′ − β

(U − c)
|ϕ|2dz = 0. (11)

Equating real parts, we get∫ z2

z1

[
|ϕ′|2 + k2|ϕ|2

]
dz +

∫ z2

z1

U ′′ − β

|U − c|2
(U − cr) |ϕ|2dz = 0;∫ z2

z1

[
|ϕ′|2 + k2|ϕ|2

]
dz =

∣∣∣∣−∫ z2

z1

U ′′ − β

|U − c|2
(U − cr) |ϕ|2dz

∣∣∣∣ .
i,e., ∫ z2

z1

[
|ϕ′|2 + k2|ϕ|2

]
dz ≤

∫ z2

z1

U ′′ − β

|U − c|2
(U − cr) |ϕ|2dz.

Using the inequality (U−cr)
|U−c|2 ≤ 1

2ci
, we get∫ z2

z1

|ϕ′|2 dz + k2
∫ z2

z1

|ϕ|2dz ≤
∫ z2

z1

(U ′′ − β)

2ci
|ϕ|2dz. (12)
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By using Rayleigh Ritz inequality,∫ z2

z1

∣∣∣ϕ′
∣∣∣2 dz ≥ π2

(z2 − z1)
2

∫ z2

z1

|ϕ|2 dz,

we have [
π2

(z2 − z1)
2 + k2

]
≤

|U ′′ − β|max

2ci
;

i.e.,

kci ≤
|U ′′ − β|max

2k
[

π2

(z2−z1)
2k2 + 1

] .
□

Theorem 2.4. Upper bound for the growth rate is given by

kci ≤
|U ′′ − β|max

2k
.

Proof. In ( 12) the first term is non negative, hence dropping, we get

k2
∫ z2

z1

|ϕ|2dz ≤
∫ z2

z1

(U ′′ − β)

2ci
|ϕ|2dz;

i.e.,

kci ≤
|U ′′ − β|max

2k
.

□

Theorem 2.5. Growth rate kci tends to zero as k → ∞.

Proof. From ( 12), the first term is non-negative, hence dropping we get

k2 ≤
|U ′′ − β|max

2ci
;

i.e.,

kci ≤
|U ′′ − β|max

2k
.

lim
k→∞

kci = 0.

□

Theorem 2.6. The bounds of amplification factor ci is

0 < ci ≤

[
2k2 (U ′′ − β) (U − Um) + (U ′′ − β)

2

π4

(z2−z1)
4 − k4

] 1
2

max

,

where

0 ≤ k ≤ π

(z2 − z1)
.
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Proof.
Multiplying ( 1) with (ϕ∗)

′′
, integrating and applying ( 2), we get∫ z2

z1

|ϕ′′|2 dz −
∫ z2

z1

(
U ′′ − β

U − c
+ k2

)
ϕ (ϕ∗)

′′
dz = 0. (13)

Taking complex conjugate of ( 1), we get

(ϕ∗)
′′
=

(
U ′′ − β

U − c∗
+ k2

)
ϕ∗. (14)

Substituting ( 14) in ( 13), we get∫ z2

z1

|ϕ′′|2 dz − k4
∫ z2

z1

|ϕ|2dz − k2
∫ z2

z1

U ′′ − β

U − c
|ϕ|2dz

−k2
∫ z2

z1

U ′′ − β

U − c∗
|ϕ|2dz −

∫ z2

z1

(U ′′ − β)
2

|U − c|2
|ϕ|2dz = 0.

Equating real part, we get∫ z2

z1

|ϕ′′|2 dz − k4
∫ z2

z1

|ϕ|2dz − 2k2
∫ z2

z1

(U ′′ − β) (U − cr)

|U − c|2
|ϕ|2dz

−
∫ z2

z1

(U ′′ − β)
2

|U − c|2
|ϕ|2dz = 0.

(15)

Equating imaginary parts of ( 11), we get

ci

∫ z2

z1

U ′′ − β

|U − c|2
|ϕ|2dz = 0. (16)

Multiplying ( 16) with 2k2 (cr−Um)
ci

and subtracting from ( 15), we get∫ z2

z1

|ϕ′′|2 dz − k4
∫ z2

z1

|ϕ|2dz − 2k2
∫ z2

z1

(U ′′ − β) (U − Um)

|U − c|2
|ϕ|2dz

−
∫ z2

z1

(U ′′ − β)
2

|U − c|2
|ϕ|2dz = 0.

Using Rayleigh-Ritz inequality and 1
|U−c|2 ≤ 1

c2i
, we get[

π4

(z2−z1)
4 − k4

]
c2i −

[
2k2 (U ′′ − β) (U − Um) + (U ′′ − β)

2
]

c2i

∫ z2

z1

|ϕ|2dz ≤ 0.

[
π4

(z2 − z1)
4 − k4

]
c2i ≤

[
2k2 (U ′′ − β) (U − Um) + (U ′′ − β)

2
]
.

ci
2 ≤ 2k2 (U ′′ − β) (U − Um) + (U ′′ − β)

2[
π4

(z2−z1)
4 − k4

] .
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ci ≤

2k2
(
U

′′ − β
)
(U − Um) +

(
U

′′ − β
)2

π4

(z2−z1)
4 − k4


1
2

max

,

where
0 ≤ k ≤ π

(z2 − z1)
.

3. Conclusion

In this paper, we consider Kuo Problem of hydrodynamic stability
which deals with incompressible, inviscid, parallel shear flows in β-plane. For this
problem, we derived parabolic instability region which intersects with Howard
semi-circle under some condition. Unlike [9], [17] new parabolic instability re-
gion does not depend on any approximations. When β = 0, new result reduces
to parabolic instability region for standard Rayleigh problem of hydrodynamic
stability. Furthermore, we derived upper bound for the growth rate and amplifi-
cation factor of an unstable mode and Howard’s conjecture namely growth rate
approaches to zero as wave number approaches to infinity.
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