• Title/Summary/Keyword: investment decision

Search Result 801, Processing Time 0.024 seconds

An Empirical Study of the Dispute Resolution for the Korean Companies in Shandong area of China (중국 산동지역 진출 한국기업의 무역분쟁해결 실증분석)

  • Kim, Jong-Hyuk;Dong, Deng;Kim, Suk-Chul
    • Korea Trade Review
    • /
    • v.41 no.3
    • /
    • pp.135-156
    • /
    • 2016
  • This study, with reference to data on economic conditions in Shandong Province, China, looked into trade and investment activities in Korea and major cities of Shandong - Qingdao, Yantai, Weihai and Jinan - and investigated claim cases between the two countries by type. In addition, we investigated the matter empirically by conducting a survey administered to 300 Korean companies investing in Shandong Province and, based on the data, tested hypotheses for inferential analysis. The findings are as follows: i) while hypotheses in which the size of a firm, represented by import and export volume, has a positive relation with the frequency of trade claim filings (H1) and with the financial value of the trade claims (H2) were quoted, company size proved to have a significantly negative relation with the time required to obtain a claim decision, which rejects the third hypothesis (H3) in which the relation was thought to be positive: ii) while products, as represented by the type of business, showed a clearly significant difference with the frequency of trade claim filings (H4) and with methods of preventing and responding to claims (H6), they did not show a significant link to the type of trade claim (H5). This study is a theoretical and empirical overview of Korean companies based in Shandong Province of China, and can be used to address the practical needs of the Korean companies looking to start business in Shandong Province.

  • PDF

The Prediction of Cryptocurrency Prices Using eXplainable Artificial Intelligence based on Deep Learning (설명 가능한 인공지능과 CNN을 활용한 암호화폐 가격 등락 예측모형)

  • Taeho Hong;Jonggwan Won;Eunmi Kim;Minsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.129-148
    • /
    • 2023
  • Bitcoin is a blockchain technology-based digital currency that has been recognized as a representative cryptocurrency and a financial investment asset. Due to its highly volatile nature, Bitcoin has gained a lot of attention from investors and the public. Based on this popularity, numerous studies have been conducted on price and trend prediction using machine learning and deep learning. This study employed LSTM (Long Short Term Memory) and CNN (Convolutional Neural Networks), which have shown potential for predictive performance in the finance domain, to enhance the classification accuracy in Bitcoin price trend prediction. XAI(eXplainable Artificial Intelligence) techniques were applied to the predictive model to enhance its explainability and interpretability by providing a comprehensive explanation of the model. In the empirical experiment, CNN was applied to technical indicators and Google trend data to build a Bitcoin price trend prediction model, and the CNN model using both technical indicators and Google trend data clearly outperformed the other models using neural networks, SVM, and LSTM. Then SHAP(Shapley Additive exPlanations) was applied to the predictive model to obtain explanations about the output values. Important prediction drivers in input variables were extracted through global interpretation, and the interpretation of the predictive model's decision process for each instance was suggested through local interpretation. The results show that our proposed research framework demonstrates both improved classification accuracy and explainability by using CNN, Google trend data, and SHAP.

A Case of Developing Performance Evaluation Model for Korean Defense Informatization (국방정보화 수준평가 모델 개발 사례)

  • Gyoo Gun Lim;Dae Chul Lee;Hyuk Jin Kwon;Sung Rim Cho
    • Information Systems Review
    • /
    • v.19 no.3
    • /
    • pp.23-45
    • /
    • 2017
  • The ROK military is making a great effort and investment in establishing network-centric warfare, a future battlefield concept, as a major step in the establishment of a basic plan for military innovation. In the military organization level, an advanced process is introduced to shorten the command control time of the military and the business process is improved to shorten the decision time. In the information system dimension, an efficient resource management is achieved by establishing an automated command control system and a resource management information system by using the battle management information system. However, despite these efforts, we must evaluate the present level of informatization in an objective manner and assess the current progress toward the future goal of the military by using objective indicators. In promoting informatization, we must systematically identify the correct areas of improvement and identify policy directions to supplement in the future. Therefore, by analyzing preliminary research, workshops, and expert discussions on the major informatization level evaluation models at home and abroad, this study develops an evaluation model and several indicators that systematically reflect the characteristics of military organizations. The developed informatization level evaluation model is verified by conducting a feasibility test for the troops of the operation class or higher. We expect that this model will be able to objectively diagnose the level of informatization of the ROK military by putting budget and resources into the right place at the right time and to rapidly improve the vulnerability of the information sector.

Risks and Network Effect upon Cloud ERP Investments: Real Options Approach (위험 및 네트워크 효과가 클라우드 ERP 투자에 미치는 효과에 대한 연구)

  • Seunghyeon Nam;Taeha Kim
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.43-57
    • /
    • 2018
  • We propose network effects upon the investment decision of cloud-based ERP. Using the survey data collected from 82 companies in 2015, we examine whether IT managers have an intention to adopt real options in order to manage the risk of cloud-based ERP investments and how the network effects influence upon the intention to adopt real options. Based on prior literature, we propose a research model with 4 hypotheses. We find partial support of the hypotheses from the empirical analysis: technological risks has a positive impact upon the adoption of real options such as defer, contract, and abandon. In contrast, we find no significant impact of security risks upon real options. We validate positive network effects upon the adoption of real options such as defer, contract, and abandon. This work empirically find that IT managers in Korean middle and small sized firms have an intention to adopt real options when the managers realize economic, technological, and relationship risks and when they expect network effects.

The Relations between Financial Constraints and Dividend Smoothing of Innovative Small and Medium Sized Enterprises (혁신형 중소기업의 재무적 제약과 배당스무딩간의 관계)

  • Shin, Min-Shik;Kim, Soo-Eun
    • Korean small business review
    • /
    • v.31 no.4
    • /
    • pp.67-93
    • /
    • 2009
  • The purpose of this paper is to explore the relations between financial constraints and dividend smoothing of innovative small and medium sized enterprises(SMEs) listed on Korea Securities Market and Kosdaq Market of Korea Exchange. The innovative SMEs is defined as the firms with high level of R&D intensity which is measured by (R&D investment/total sales) ratio, according to Chauvin and Hirschey (1993). The R&D investment plays an important role as the innovative driver that can increase the future growth opportunity and profitability of the firms. Therefore, the R&D investment have large, positive, and consistent influences on the market value of the firm. In this point of view, we expect that the innovative SMEs can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. And also, we expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Aivazian et al.(2006) exert that the financial unconstrained firms with the high accessibility to capital market can adjust dividend payment faster than the financial constrained firms. We collect the sample firms among the total SMEs listed on Korea Securities Market and Kosdaq Market of Korea Exchange during the periods from January 1999 to December 2007 from the KIS Value Library database. The total number of firm-year observations of the total sample firms throughout the entire period is 5,544, the number of firm-year observations of the dividend firms is 2,919, and the number of firm-year observations of the non-dividend firms is 2,625. About 53%(or 2,919) of these total 5,544 observations involve firms that make a dividend payment. The dividend firms are divided into two groups according to the R&D intensity, such as the innovative SMEs with larger than median of R&D intensity and the noninnovative SMEs with smaller than median of R&D intensity. The number of firm-year observations of the innovative SMEs is 1,506, and the number of firm-year observations of the noninnovative SMEs is 1,413. Furthermore, the innovative SMEs are divided into two groups according to level of financial constraints, such as the financial unconstrained firms and the financial constrained firms. The number of firm-year observations of the former is 894, and the number of firm-year observations of the latter is 612. Although all available firm-year observations of the dividend firms are collected, deletions are made in the case of financial industries such as banks, securities company, insurance company, and other financial services company, because their capital structure and business style are widely different from the general manufacturing firms. The stock repurchase was involved in dividend payment because Grullon and Michaely (2002) examined the substitution hypothesis between dividends and stock repurchases. However, our data structure is an unbalanced panel data since there is no requirement that the firm-year observations data are all available for each firms during the entire periods from January 1999 to December 2007 from the KIS Value Library database. We firstly estimate the classic Lintner(1956) dividend adjustment model, where the decision to smooth dividend or to adopt a residual dividend policy depends on financial constraints measured by market accessibility. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between current payout rato and target payout ratio each year. In the Lintner model, dependent variable is the current dividend per share(DPSt), and independent variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt). We hypothesized that firms adjust partially the gap between the current dividend per share(DPSt) and the target payout ratio(Ω) each year, when the past dividend per share(DPSt-1) deviate from the target payout ratio(Ω). We secondly estimate the expansion model that extend the Lintner model by including the determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory. In the expansion model, dependent variable is the current dividend per share(DPSt), explanatory variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt), and control variables are the current capital expenditure ratio(CEAt), the current leverage ratio(LEVt), the current operating return on assets(ROAt), the current business risk(RISKt), the current trading volume turnover ratio(TURNt), and the current dividend premium(DPREMt). In these control variables, CEAt, LEVt, and ROAt are the determinants suggested by the residual dividend theory and the agency theory, ROAt and RISKt are the determinants suggested by the dividend signaling theory, TURNt is the determinant suggested by the transactions cost theory, and DPREMt is the determinant suggested by the catering theory. Furthermore, we thirdly estimate the Lintner model and the expansion model by using the panel data of the financial unconstrained firms and the financial constrained firms, that are divided into two groups according to level of financial constraints. We expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, because the former can finance more easily the investment funds through the market accessibility than the latter. We analyzed descriptive statistics such as mean, standard deviation, and median to delete the outliers from the panel data, conducted one way analysis of variance to check up the industry-specfic effects, and conducted difference test of firms characteristic variables between innovative SMEs and noninnovative SMEs as well as difference test of firms characteristic variables between financial unconstrained firms and financial constrained firms. We also conducted the correlation analysis and the variance inflation factors analysis to detect any multicollinearity among the independent variables. Both of the correlation coefficients and the variance inflation factors are roughly low to the extent that may be ignored the multicollinearity among the independent variables. Furthermore, we estimate both of the Lintner model and the expansion model using the panel regression analysis. We firstly test the time-specific effects and the firm-specific effects may be involved in our panel data through the Lagrange multiplier test that was proposed by Breusch and Pagan(1980), and secondly conduct Hausman test to prove that fixed effect model is fitter with our panel data than the random effect model. The main results of this study can be summarized as follows. The determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory explain significantly the dividend policy of the innovative SMEs. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between the current payout ratio and the target payout ratio each year. In the core variables of Lintner model, the past dividend per share has more effects to dividend smoothing than the current earnings per share. These results suggest that the innovative SMEs maintain stable and long run dividend policy which sustains the past dividend per share level without corporate special reasons. The main results show that dividend adjustment speed of the innovative SMEs is faster than that of the noninnovative SMEs. This means that the innovative SMEs with high level of R&D intensity can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. The other main results show that dividend adjustment speed of the financial unconstrained SMEs is faster than that of the financial constrained SMEs. This means that the financial unconstrained firms with high accessibility to capital market can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Futhermore, the other additional results show that dividend adjustment speed of the innovative SMEs classified by the Small and Medium Business Administration is faster than that of the unclassified SMEs. They are linked with various financial policies and services such as credit guaranteed service, policy fund for SMEs, venture investment fund, insurance program, and so on. In conclusion, the past dividend per share and the current earnings per share suggested by the Lintner model explain mainly dividend adjustment speed of the innovative SMEs, and also the financial constraints explain partially. Therefore, if managers can properly understand of the relations between financial constraints and dividend smoothing of innovative SMEs, they can maintain stable and long run dividend policy of the innovative SMEs through dividend smoothing. These are encouraging results for Korea government, that is, the Small and Medium Business Administration as it has implemented many policies to commit to the innovative SMEs. This paper may have a few limitations because it may be only early study about the relations between financial constraints and dividend smoothing of the innovative SMEs. Specifically, this paper may not adequately capture all of the subtle features of the innovative SMEs and the financial unconstrained SMEs. Therefore, we think that it is necessary to expand sample firms and control variables, and use more elaborate analysis methods in the future studies.

Which types of the strategies diffused to the public through company's announcement do contribute to the long-term performance? (공시된 경영전략의 유형별 장기실적 기여도 분석)

  • Kang, Won
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.4 no.4
    • /
    • pp.45-70
    • /
    • 2009
  • This article investigates which types of the strategies announced by the listed firms contribute to enhancing the long-term performance of the companies. Since 2002, Korean Exchange adopted the "faire disclosure policy" which mandates that all publicly traded companies must disclose material information to all investors at the same time. Thanks to the policy, Korean investors can, now, easily access the board's decision on management strategies on the same day the decision is made. If the companies trustfully carry out their announced strategies, we can decide which types of strategies actually enhance or deteriorate the long-term performance, simply by comparing the announced strategies and the firm's performance. The sample companies are confined to 60 firms that became listed in the KOSDAQ market through back-door listing from 2003 to 2005. Using only the newly listed companies, we can avoid the interference on the long-term performance of the strategies pursued before the event date. This often holds true, for many companies radically modify their strategies after the listing. Furthermore, the back-door listing companies serve our purpose better than IPO companies do, because the former tend to have a variety of announcement within a given period of time beginning the listing date. Using these sample companies, this article analyzes the effect on one year buy-and-hold returns and abnormal buy-and-hold returns after the listing of the various types of strategies announced during the same period of time. The results show that those evidences of restructuring such as 'reduction of capital' and 'resignation of incumbent board members', actually contribute to the increase in adjusted long-term stock returns. Those strategies which can be view as evidence of new investment such as 'increase in tangible assets', 'acquisition of other companies', do also helps the stockholders better off. On the contrary, 'increase in bank loans', 'changes of CEO' and 'merger' deteriorate the equity value. The last findings let us to presume that the back-door listing companies appear to use the bank loans for value-reducing activities; the change in CEO is not a sign of restructuring, but rather a sign of failure of the restructuring; another merger carried out after back-door listing itself is also value-reducing activity. This article's findings on reduction of capital, merger and bank loans oppose the results of the former empirical studies which analyze only the short-term effect on stock price. Therefore, more long-term performance studies on public disclosures are in order.

  • PDF

The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM (다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형)

  • Park, Ji-Young;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Development of a Feasibility Evaluation Model for Apartment Remodeling with the Number of Households Increasing at the Preliminary Stage (노후공동주택 세대수증가형 리모델링 사업의 기획단계 사업성평가 모델 개발)

  • Koh, Won-kyung;Yoon, Jong-sik;Yu, Il-han;Shin, Dong-woo;Jung, Dae-woon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.4
    • /
    • pp.22-33
    • /
    • 2019
  • The government has steadily revised and developed laws and systems for activating remodeling of apartments in response to the problems of aged apartments. However, despite such efforts, remodeling has yet to be activated. For many reasons, this study noted that there were no tools for reasonable profitability judgements and decision making in the preliminary stages of the remodeling project. Thus, the feasibility evaluation model was developed. Generally, the profitability judgements are made after the conceptual design. However, decisions to drive remodeling projects are made at the preliminary stage. So a feasibility evaluation model is required at the preliminary stage. Accordingly, In this study, a feasibility evaluation model was developed for determining preliminary stage profitability. Construction costs, business expenses, financial expenses, and generally sales revenue were calculated using the initial available information and remodeling variables derived through the existing cases. Through this process, we developed an algorithm that can give an overview of the return on investment. In addition, the preliminary stage feasibility evaluation model developed was applied to three cases to verify the applicability of the model. Although applied in three cases, the difference between the model's forecast and actual case values is less than 5%, which is considered highly applicable. If cases are expanded in the future, it will be a useful tool that can be used in actual work. The feasibility evaluation model developed in this study will support decision making by union members, and if the model is applied in different regions, it will be expected to help local governments to understand the size of possible remodeling projects.

A Study on Foreign Exchange Rate Prediction Based on KTB, IRS and CCS Rates: Empirical Evidence from the Use of Artificial Intelligence (국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거)

  • Lim, Hyun Wook;Jeong, Seung Hwan;Lee, Hee Soo;Oh, Kyong Joo
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.71-85
    • /
    • 2021
  • The purpose of this study is to find out which artificial intelligence methodology is most suitable for creating a foreign exchange rate prediction model using the indicators of bond market and interest rate market. KTBs and MSBs, which are representative products of the Korea bond market, are sold on a large scale when a risk aversion occurs, and in such cases, the USD/KRW exchange rate often rises. When USD liquidity problems occur in the onshore Korean market, the KRW Cross-Currency Swap price in the interest rate market falls, then it plays as a signal to buy USD/KRW in the foreign exchange market. Considering that the price and movement of products traded in the bond market and interest rate market directly or indirectly affect the foreign exchange market, it may be regarded that there is a close and complementary relationship among the three markets. There have been studies that reveal the relationship and correlation between the bond market, interest rate market, and foreign exchange market, but many exchange rate prediction studies in the past have mainly focused on studies based on macroeconomic indicators such as GDP, current account surplus/deficit, and inflation while active research to predict the exchange rate of the foreign exchange market using artificial intelligence based on the bond market and interest rate market indicators has not been conducted yet. This study uses the bond market and interest rate market indicator, runs artificial neural network suitable for nonlinear data analysis, logistic regression suitable for linear data analysis, and decision tree suitable for nonlinear & linear data analysis, and proves that the artificial neural network is the most suitable methodology for predicting the foreign exchange rates which are nonlinear and times series data. Beyond revealing the simple correlation between the bond market, interest rate market, and foreign exchange market, capturing the trading signals between the three markets to reveal the active correlation and prove the mutual organic movement is not only to provide foreign exchange market traders with a new trading model but also to be expected to contribute to increasing the efficiency and the knowledge management of the entire financial market.