• Title/Summary/Keyword: inverter control system

Search Result 1,563, Processing Time 0.026 seconds

Development of Regenerative Inverter for Electric Railway Using Space Vector PWM (SVPWM을 이용한 전기철도용 회생 인버터 개발)

  • 백병산;정문구;김태완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • As a device that returns surplus energy, regenerated from trains to d.c. source, to a.c. system and reuses it, the thyristor Inverter has been widely used. Because the conventional thyristor inverter is a unidirectional phase-controlled device, it Is Impossible to control the power factor of its output. Moreover, harmonics emission is high and it needs to take a additional filter. In this paper, to solve the problems stated above, the inverter, which can control real and reactive power by adopting IGBT modules as switching elements and being controlled by means of space vector PWM, is developed. Considering high economical efficiency and reliability in order to apply to the system for commercial use, the developed inverter is equipped with fully digital control system and low pass filter, and reduces harmonics and has compact size. The detail description about the developed inverter is stated in various respects: design criteria, technical description, power circuits, control techniques, the developed system, test results, etc.

A Single-Phase Embedded Z-Source DC-AC Inverter by Asymmetric Voltage Control (비대칭 전압 제어를 이용한 단상 임베디드 Z-소스 DC-AC 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • In case of the conventional DC-AC inverter using two DC-DC converters with unipolar output capacitor voltages, for generating the AC output voltage, the output capacitor voltages of its each DC-DC converter must be higher than the DC input voltage. To solve this problem, this paper proposes a single-phase DC-AC inverter using two embedded Z-source converters with bipolar output capacitor voltages. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The AC output voltage is obtained by the difference of the output capacitor voltages of each converter. Though the output capacitor voltage of converter is relatively low compared to the conventional method, it can be obtained the same AC output voltage. Moreover, by controlling asymmetrically the output capacitor voltage, the AC output voltage of the proposed system is higher than the DC input voltage. To verify the validity of the proposed system, a DSP(TMS320F28335) based single-phase embedded Z-source DC-AC inverter was made and the PSIM simulation was performed under the condition of the DC source 38V. As controlled symmetrically and asymmetrically the output capacitor voltages of each converter, the proposed inverter could produce the AC output voltage with sinusoidal waveform. Particularly, in case of asymmetric control, a higher AC output voltage was obtained. Finally, the efficiency of the proposed system was measured as 95% and 97% respectively in case of symmetric and asymmetric control.

Modeling and Simulation Technique of Two Quadrant Chopper and PWM Inverter-Fed IPMSM Drive System and Its Application to Hybrid Vehicles

  • Murata, Toshiaki;Kawatsu, Utaro;Tamura, Junji;Tsuchiya, Takeshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.91-97
    • /
    • 2012
  • This paper presents a state space model of a two quadrant chopper and PWM inverter-fed Interior Permanent Magnet Synchronous Motor (IPMSM) drive system and its application to hybrid vehicles. The drive system has two different state equations for motoring and regenerating action. This paper presents a common state equation by using State Space Averaging method. Using this model of the IPMSM drive system, detailed simulation and controller design of the drive system, including PWM inverter switching, are given. The validity of this model and usefulness, according to a comparison among Maximum Torque/Ampere control, Maximum Torque/Flux control, and Maximum Efficiency optimization, are confirmed from simulation results.

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Choi Y.K.;Ko T.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.987-993
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Furthermore, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3kVA modules are designed and implemented to confirm the effectiveness of the proposed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristic.

  • PDF

New Soft-Switching Current Source Inverter for Photovoltaic Power System

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.644-649
    • /
    • 2001
  • This paper proposes a soft-switching current -source inverter for photovoltaic power system, which has an H-type switched-capacitor module composed of two semiconductor switches, two diodes, and an L-C resonant circuit. The operation of proposed system was analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with SPICE and experimental works with a hardware prototype. The proposed system could be effectively applied for the power converter of photovoltaic power system interconnected with the power system.

  • PDF

COMMON-MODE VOLTAGE PULSE CANCELLATION METHOD BASED ON SPACE-VECTOR PWM IN CONVERTER-INVERTER SYSTEM

  • Lee, Hyeoun-Dong;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.171-175
    • /
    • 1998
  • This paper proposes the advanced PWM method that can reduce common-mode voltage in three-phase PWM converter-inverter system. By the proper distribution of the zero-voltage vector of inverter, it is possible to cancel out a common-mode voltage pulse in a sampling period. Since the proposed PWM method maintains the effective-voltage vector, it does not affect the control performance of converter-inverter system. Without any extra hardware, overall common-mode voltage can be decreased by one-third compared with conventional PWM scheme.

  • PDF

The Study of Manufacture and Inertia Load Test of Inverter for Electrical Multiple Unit (전동차용 VVVF 인버터 제작 및 시험)

  • 한영재;김길동;박현준;이은규;한경희
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • In this paper, the IGBT VVVF inverter for 1C4M propulsion system of railway traction is studied. The inverter is consisted of IGBT stacks, a DB unit, and a control unit. The test results of the combined system is given, which shows an excellent performance of the overall system.

  • PDF

A Parallel Inverter System with an Instantaneous Power Balance Control (순시전력 균형제어를 이용한 병렬 인버터 시스템)

  • Sun, Young-Sik;Lee, Chang-Seok;Kim, Si-Kyung;Kim, Chang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • The parallel inverter is widely utilized because of its fault-tolerance capability, high-current output at constant voltages and system modularity. The conventional paralled inverter usually employes an active and reactive power control or a frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes novel control scheme for equalization of output power between the parallel connected inverters. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed constrol scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Application of Instantaneous sinusoidal current tracking control inverter for photovoltaic system (순시직전류(瞬時直電流) 추종제어형(追從制御形) Inverter의 태양광발전(太陽光發電) 시스템에의 응용(應用))

  • Yu, Kwon-Jong;Jung, Myung-Woong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.372-375
    • /
    • 1990
  • A sinusoidal PWM type inverter using 1GBT and a new instantaneous current tracking control stategy is described. Its utilization as an interface for a grid-connected photovoltaic system with maxmum power tracking capability is explaned, and competer simulation along with waveforms are discussed. Finally, experimental results are analysed by state space avarge method to actual grid-connected systems.

  • PDF

Adaptive Harmonic Control against DC Input Voltage Fluctuation of PWM Inverter by Instantaneous Integration (순시적분에 의한 PWM인버어터의 직류 입력전압 맥동에 대한 고조파 적응제어)

  • Park, Sung-Jun;Kwon, Y.A.;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.721-723
    • /
    • 1993
  • A PWM switching control strategy based on instantaneous integration concept for reducing hamonic components of inverter system with fluctuating input voltage is presented. Applying this strategy to single phase full bridge PWM inverter through bipolor switching method and unipolor switching method, reduction of hamonic components of output voltage and current is demonstrated through simulation. The system operation is examined and confirmed by experiments.

  • PDF