• Title/Summary/Keyword: inverted Pendulum

Search Result 463, Processing Time 0.042 seconds

Experimental Studies of neural Network Control Technique for Nonlinear Systems (신경회로망을 이용한 비선형 시스템 제어의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.

A Study on Friction Measurement of an Inverted Pendulum System using the Regression Analysis (회귀분석을 통한 역진자 시스템의 마찰력 측정에 관한 연구)

  • Park, Kyung-Yun;Park, Duck-Gee;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1775-1776
    • /
    • 2006
  • This paper deals with the problem of friction measurement of an inverted pendulum system using the regression analysis and proposes a solution. The approach taken in this study is getting the friction from a regression relational expression between the motor voltage and the cart velocity of an inverted pendulum system. The result to compensate LQR (linear Quadratic Regulator) controller with the friction which is measured in system, improved the performance of the system. Above all, the study has found that the proposed compensation of the friction reduces the oscillation of the cart position. In conclusion, the proposed method is useful when parameters in the given system model are not known.

  • PDF

T-S Fuzzy Model-Based Control of a Rotary-Type Inverted Pendulum (회전형 역진자 시스템의 T-S 퍼지모델 기반 제어)

  • Lee, Hee-Jung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2815-2817
    • /
    • 2005
  • This paper presents an experiment study on the control of a rotary-type inverted pendulum based on the Takagi-Sugeno (T-S) fuzzy model approach. A sufficient condition for stability of the T-S fuzzy control system is given via linear matrix inequalities (LMIs). State-feedback controllers for sub-systems are designed from the sufficient condition via change of variables which is one of the popular LMI techniques. Experimental results on a rotary-type inverted pendulum control show the feasibility of the T-S fuzzy model-based control method.

  • PDF

Control of a Inverted Pendulum Using Fuzzy-PID Controller (퍼지 PID 제어기를 이용한 도립진자 제어)

  • Shin, Ja-Ho;Hong, Dae-Seung;Ryu, Chang-Wan;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.859-861
    • /
    • 1999
  • This paper describes the development of a fuzzy gain scheduling scheme of PID controller for inverted pendulum system. Fuzzy rules and reasoning are utilized on-line to determine the controller parameters based on the error signal and its difference. Simulation results demonstrate that better control performance can be achieved in comparison with PID controller using pole placement to control of a Inverted pendulum.

  • PDF

A Derivation of the Equilibrium Point for a Controller of a Wheeled Inverted Pendulum with Changing Its Center of Gravity (무게중심이 변동되는 차륜형 역진자의 평형점 상태에 관한 연구)

  • Lee, Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.496-501
    • /
    • 2012
  • An equilibrium point of a WIP (Wheeled Inverted Pendulum) with changing its center of gravity is derived and validated by various numerical simulations. Generally, the WIP has two equilibrium points which are unstable and stable one. The unstable one is interested in this study. To keep the WIP over the unstable equilibrium point, the WIP is consistently being adjusted. A state feedback controller for the WIP needs a control reference for the equilibrium point. The control reference can be obtained by studying an equilibrium point of the WIP based on statics. By using Lagrange method, this study is deriving dynamic equations of the WIP both with and without changing its center of gravity. Various numerical simulations are carried out to show the validation of the equilibrium point.

Adaptive Fuzzy Control of Inverted Pendulum Using the Sugeno-Type of Fuzzy Logic (Sugeno 형태의 퍼지 논리를 이용한 도립 진자의 적응 퍼지 제어)

  • Park, Hae-Min;Won, Sung-Woon;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.193-196
    • /
    • 2002
  • This paper proposes the control problem of an inverted pendulum system based on Sugeno-Type of fuzzy logic. The universal approximating capability, learning ability, adaptation capability and disturbance rejection are collected in one control strategy. The proposed scheme does not require an accurate dynamic model and the joint acceleration measurement, yet it guarantees asymptotic trajectory tracking. Experimental results perform with an inverted pendulum to show the effectiveness of the approach.

  • PDF

A Study on the SIIM Fuzzy Quasi-Sliding Mode Control for the Double Inverted Pendulum on a Cart (수레-2축역진자 시스템의 SIIM 퍼지 의사-슬라이딩 모드 제어에 관한 연구)

  • Chai, Chang-Hyun;Kim, Seong-Ro
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-121
    • /
    • 2018
  • In this paper, we propose the SIIM fuzzy Quasi-sliding mode controller for the system of a double inverted pendulum on a cart. Since it is difficult to handle this 6th-order system, we decoupled the entire system into three $2^{nd}$ order subsystem, and we designed the SIIM fuzzy Quasi-sliding mode controller for each subsystem, which was easy and did not require the derivation of the equivalent control. The stability of the entire system is guaranteed using Lyapunov function. The validity and robustness of the proposed controller are demonstrated through the computer simulation, and the results are compared with the results of former studies.

The control of a Mobile Inverted Pendulum with EtherCAT (이더캣을 이용한 모바일 역진자 시스템의 제어)

  • Han, Jong-Ho;Ryu, Tae-Yeol;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • The Industrial Ethernet technology enables advanced control architectures and offers several advantages for high precision multiple motors actuation. This paper presents the implementation and analysis of a motor drive with EtherCAT, an industrial standard for real time Ethernet. Considering the characteristics of the implemented software and the network interface, the motion and time-response of motor actuation for the networked Mobile Inverted Pendulum have been analyzed. Using the analysis with the task execution times measured from the developed drive, the performance characteristics of the drive in respect of the maximum achievable throughput have been verified by comparing to the conventional RS232.

Position control of a Mobile Inverted Pendulum using RBF network (RBF 신경회로망을 이용한 Mobile Inverted Pendulum의 위치제어)

  • Noh, Jin-Seok;Lee, Geun-Hysong;Jung, Seul
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.179-181
    • /
    • 2007
  • This paper presents the desired position control of the mobile inverted pendulum system(MIP). The MIP is required to track the circular trajectory in the xy plane through the kinematic Jacobian relationship between the xy plane and the joint space. The reference compensation technique of the radial basis function(RBF) network is used as a neural network control method. The back-propagation teaming algorithm of the RBF network is derived and embedded on a DSP board. Experimental studies of tracking the circular trajectory are conducted.

  • PDF