• Title/Summary/Keyword: inverted Pendulum

Search Result 463, Processing Time 0.03 seconds

Optimal ARS Control of an Inverted Pendulum Robot for Climbing Ability Improvement (등반능력향상을 위한 이륜 역진자 로봇의 최적 ARS 제어)

  • Kwon, Young-Kuk;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.108-117
    • /
    • 2011
  • This paper proposes an optimal ARS control of a two-wheel mobile inverted pendulum robot. Conventional researches are highly concentrated on the robust control of a mobile inverted pendulum on the flat ground, $i.e.$, mostly focus on the compensation of gyroscope signals. This newly proposed algorithm deals with a climbing control of a slanted surface based on the dynamic modeling using the conventional structure. During the climbing control of the robot, unexpected disturbance forces are essentially caused by the irregular contact force which comes from the irregular contact angle between the wheel and the terrain. The disturbances have effects on the optimal posture of the mobile robot to compensate the slanted angle. Therefore the dynamics equations through physical interpretation are derived for the selection of optimum climbing posture through ARS. Also using the ultrasonic sensor the slope information is obtained to compensate for the force of gravity. The control inputs are dynamically adjusted to climb up the slanted surface effectively. The proposed algorithm is demonstrated through the real experiments.

Fuzzy Variable Structure Control of Wheel-Driven Inverted Pendulum (바퀴구동 도립진자에 대한 퍼지 가변구조제어)

  • Yoo Byung-Kook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • This paper suggests a fuzzy variable structure control scheme for Takagi-Sugeno(T-S) fuzzy model and presents the attitude control of the wheel-driven inverted pendulum(WDIP) based on the proposed control algorithm. The proposed controller is designed based on the T-S fuzzy modeling of nonlinear system and the unification of gain matrices in linear subsystems that constitute the overall fuzzy model. The uncertainties generated in the gain matrix unifying procedure can be interpreted as the input disturbances of the conventional variable structure control. These unifying disturbances can be resolved by using the robustness property of the conventional variable structure system. Design example for wheel-driven inverted pendulum demonstrates the utility and validity of the proposed control scheme.

  • PDF

Intelligent Balancing Control of Inverted Pendulum on a ROBOKER Arm Using Visual Information (영상 정보를 이용한 ROBOKER 팔 위의 역진자 시스템의 지능 밸런싱 제어 구현)

  • Kim, Jeong-Seop;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.595-601
    • /
    • 2011
  • This paper presents balancing control of inverted pendulum on the ROBOKER arm using visual information. The angle of the inverted pendulum placed on the robot arm is detected by a stereo camera and the detected angle is used as a feedback and tracking error for the controller. Thus, the overall closed loop forms a visual servoing control task. To improve control performance, neural network is introduced to compensate for uncertainties. The learning algorithm of radial basis function(RBF) network is performed by the digital signal controller which is designed to calculate floating format data and embedded on a field programmable gate array(FPGA) chip. Experimental studies are conducted to confirm the performance of the overall system implementation.

The Performance Verification of Optimal State Feedback Controllers via The Inverted Pendulum (도립진자 시스템을 통한 최적 상태 되먹임 제어기의 성능 검증)

  • Lee, Jong-Yeon;Lee, Bo-Ra;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.768-773
    • /
    • 2010
  • This paper presents the performance verification of the optimal state feedback controller via inverted pendulum systems. The proposed method generates the optimal control inputs satisfying both the constrained input and the performance specification. In addition, it reduces the steady-state error by adopting the integral control technique. In order to verify the performance of the proposed method, we apply both the proposed method and the general state feedback control to an inverted pendulum, CEM-IP-01 in the experiment.

Controller Design of Two Wheeled Inverted Pendulum Type Mobile Robot Using Neural Network (신경회로망을 이용한 이륜 역진자형 이동로봇의 제어기 설계)

  • An, Tae-Hee;Kim, Yong-Baek;Kim, Young-Doo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.536-544
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum type robot is designed to have more stable balancing capability than conventional controllers. Traditional PID control structure is chosen for the two wheeled inverted pendulum type robot, and proper gains for the controller are obtained for specified user's weights using trial-and-error methods. Next a neural network is employed to generate PID controller gains for more stable control performance when the user's weight is arbitrarily selected. Through simulation studies we find that the designed controller using the neural network is superior to the conventional PID controller.

Implementation of a Fuzzy Control System for Two-Wheeled Inverted Pendulum Robot based on Artificial Neural Network (인공신경망에 기초한 이륜 역진자 로봇의 퍼지 제어시스템 구현)

  • Jeong, Geon-Wu;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • In this paper, a control system for two wheeled inverted pendulum robot is implemented to have more stable balancing capability than the conventional control system. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the control system are obtained for 3 specified weights using a trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the weight is arbitrarily selected. Through some experiments, we find that the proposed fuzzy control system using the neural network is superior to the conventional fuzzy control system.

Interactive Locomotion Controller using Inverted Pendulum Model with Low-Dimensional Data (역진자 모델-저차원 모션 캡처 데이터를 이용한 보행 모션 제어기)

  • Han, KuHyun;Kim, YoungBeom;Park, Byung-Ha;Jung, Kwang-Mo;Han, JungHyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1587-1596
    • /
    • 2016
  • This paper presents an interactive locomotion controller using motion capture data and inverted pendulum model. Most of the data-driven character controller using motion capture data have two kinds of limitation. First, it needs many example motion capture data to generate realistic motion. Second, it is difficult to make natural-looking motion when characters navigate dynamic terrain. In this paper, we present a technique that uses dimension reduction technique to motion capture data together with the Gaussian process dynamical model (GPDM), and interpolates the low-dimensional data to make final motion. With the low-dimensional data, we can make realistic walking motion with few example motion capture data. In addition, we apply the inverted pendulum model (IPM) to calculate the root trajectory considering the real-time user input upon the dynamic terrain. Our method can be used in game, virtual training, and many real-time applications.

Experimental Adaptive Fuzzy Sliding Mode Control of an Inverted Pendulur (도립 진자의 적응 퍼지 슬라이딩 모드 제어기 실험)

  • Kim, Sung-Tae;Park, Hae-Min;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2143-2145
    • /
    • 2002
  • This paper proposes the control problem of an inverted pendulum system based on adaptive fuzzy sliding mode. The universal approximating capability, learning ability, adaptation capability and disturbance rejection are collected in one control strategy. The proposed scheme does not require an accurate dynamic model and the joint acceleration measurement, yet it guarantees asymptotic trajectory tracking. Experimental results perform with an inverted pendulum to show the effectiveness of the approach.

  • PDF

A Control of Inverted pendulum Using Genetic-Fuzzy Logic (유전자-퍼지 논리를 사용한 도립진자의 제어)

  • 이상훈;박세준;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.977-984
    • /
    • 2001
  • In this paper, Genetic-Fuzzy Algorithm for Inverted Pendulum is presented. This Algorithms is combine Fuzzy logic with the Genetic Algorithm. The Fuzzy Logic Controller is only designed to two inputs and one output. After Fuzzy control rules are determined, Genetic Algorithm is applied to tune the membership functions of these rules. To measure of performance of the designed Genetic-Fuzzy controller, Computer simulation is applied to Inverted Pendulum system. In the simulation, In the case of f[0.3, 0.3] Fuzzy controller is measured that maximum undershoot is $-5.0 \times 10^{-2}[rad]$, maximum undershoot is $3.92\times10^{-2}[rad]$ individually however, Designed algorithm is zero. The Steady state time is approximated that Fuzzy controller is 2.12[sec] and designed algorithm is 1.32[sec]. The result of simulation, Resigned algorithm is showed it's efficient and effectiveness for Inverted Pendulum system.

  • PDF

A Sliding Mode Control Scheme for Inverted Pendulum System (슬라이딩 모드 제어기법을 이용한 도립진자 시스템 제어)

  • Han, Sang-Wan;Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1020-1026
    • /
    • 2014
  • A problem of sliding mode control is chattering because of controle input signal included unknown disturbance and nonlinear input parameters. This paper presents a sliding mode controller design to inverted pendulum system. In this paper, a sliding mode control algorithm to reduce a chattering is proposed. The reduction of chattering is accomplished by smoothing function for nonlinear control input. In this method, the dynamic equations of the inverted pendulum is decoupled by considering nonlinear parameters and external disturbances. Therefore, this study is applied to obtain switching control inputs for sliding mode controller. The proposed technique is tested to the control of inverted pendulum through computer simulations. The result shown reduced chattering in control input.