• Title/Summary/Keyword: invertebrate

Search Result 179, Processing Time 0.024 seconds

Recent Advances in the Innate Immunity of Invertebrate Animals

  • Iwanaga, Sadaaki;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.128-150
    • /
    • 2005
  • Invertebrate animals, which lack adaptive immune systems, have developed other systems of biological host defense, so called innate immunity, that respond to common antigens on the cell surfaces of potential pathogens. During the past two decades, the molecular structures and functions of various defense components that participated in innate immune systems have been established in Arthropoda, such as, insects, the horseshoe crab, freshwater crayfish, and the protochordata ascidian. These defense molecules include phenoloxidases, clotting factors, complement factors, lectins, protease inhibitors, antimicrobial peptides, Toll receptors, and other humoral factors found mainly in hemolymph plasma and hemocytes. These components, which together compose the innate immune system, defend invertebrate from invading bacterial, fungal, and viral pathogens. This review describes the present status of our knowledge concerning such defensive molecules in invertebrates.

Isolation of an Invertebrate-type Lysozyme from the Body Wall of Spoon Worm, Urechis unicinctus (개불의 체벽으로부터 i-type 라이소자임의 정제)

  • Oh, Hye Young;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.300-306
    • /
    • 2018
  • Lysozymes are innate immune factors that play a critical role in the defense against pathogens in various invertebrate animals including spoon worms. In this study, an invertebrate-type lysozyme was isolated from the body wall of spoon worm, Urechis unicinctus. The acidified body wall extract was partially separated using a Sep-Pak C18 cartridge. Among the fractions, the materials that were eluted with 60% methanol/0.1% trifluoroacetic acid showed the most potent antimicrobial activity against Bacillus subtilis KCTC 1021. A series of high performance liquid chromatography (HPLC) steps were then utilized to isolate a single antimicrobial absorbance peak. The molecular weight of the antimicrobial peak was approximated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which was approximately 13 to 14 kDa. The partial primary structure of this antimicrobial protein that was analyzed, using LC-MS/MS, was CTGGRPPTCEDYAK (1611.69 Da). Homology search of these fourteen residues, using the National Center for Biotechnology Information Basic Local Alignment Search Tool (NCBI BLAST), revealed that the isolated protein was similar to the invertebrate-type lysozymes described in other animals. Then, the antimicrobial and lysozyme enzymatic (muramidase) activities of this protein were assessed. The isolated protein possessed antimicrobial activity and potent muramidase activity, which were comparable to those of hen egg white lysozyme. Therefore, the isolated protein was designated as Urechis unicinctus invertebrate-type lysozyme from the body wall, Uu-iLysb.

Spatial Distribution of Marine Invertebrate Communities on Intertidal Rocky Shore in Dokdo (독도 암반조간대 무척추동물군집의 공간적 분포)

  • Cha, Jae-Hoon;Kim, Mi-Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.143-150
    • /
    • 2012
  • To determine the spatial distribution of marine invertebrate communities in intertidal rocky shore on Dokdo, 10 times investigation was carried out at 7 stations during the year of 2009~2011. The marine invertebrate community can be divided into three different groups based on cluster analysis of Bray-Curtis similarity. As a first group, the pebble beach community, Omphalius rusticus, Monodonta perplexa, and Chlorostoma lischkei which were movable gastropod with dominant occurrence. Secondly, the still rocky shore community, O. rusticus, Serpulorbis imbricatus and Aplysia kurodai occurred dominantly. Finally, the wave-exposed rocky shore community which dominantly occurred by two sessile arthropods, Barnacles, Chthamalus challengeri and Pollicipes mitella. The three groups were likely to be determined by texture of substrate and hydrodynamic conditions of rocky shore in Dokdo. The results indicated that diversity of marine intertidal invertebrate community around Dok do was mainly affected by habitat characteristics and the surrounding physical properties.

Invertebrate Models Used for Characterization of Drug Dependence and Development of Anti-Drug Dependent Agents

  • Chang Hyun-Sook;Kim Ha-Won;Lee Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Drug dependence deals a heavy socioeconomic burden to the society. For adolescents, the damage from drug dependence is greater than adults considering their higher susceptibility to drug effect and increasing chance for violence leading to criminal punishment process. Habitual drug use depends on genetic and environmental factors and the complex interactions between the two. Mammalian model systems have been useful in understanding the neurochemical and cellular impacts of abused drugs on specific regions of the brain, and in identifying the molecular targets of drugs. More elucidation is required whether biological effects of drugs actually cause the habitual dependence at the cellular level. Although there is much insight available on the nature of drug abuse problems, none of the systems designed to help drug dependent individuals is efficient in screening functional ingredients of the drug, and thus resulting in the failure of helping drug dependent individuals recover from drug dependence. Alternative model systems draw the attention of researchers, such as the invertebrate model systems of nematodes (Caenorhabditis elegans) and fruit flies (Drosophila melanogaster). These models should provide new insight into the mechanisms leading to the behavior of drug users (even functional studies analyzing molecular mechanism), and screening useful components to help remove drug dependence among drug users. The relatively simple anatomy and gene expression of the invertebrate model systems should enable researchers to coordinate current knowledge on drug abuse. Furthermore, the invertebrate model systems should facilitate advance in experiments on the susceptibility of specific genetic backgrounds and the interaction between genetic factors to drug dependence.

Insight into Rhodopsin Diversity from Viewpoint of Counterion

  • Terakita, Akihisa
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.33-36
    • /
    • 2002
  • In vertebrate rhodopsins the glutamic acid at position 113 serves as a counterion to stabilize the protonated retinylidene Schiff base linkage and to shift the spectrum to the visible region. Invertebrate rhodopsins and retinochrome have the amino acid residue different from glutamic acid or asparatic acid at this position and therefore, these pigments may have a counterion at different position. We first investigated the counterion in retinochrome by site specific mutagenesis. The results showed that the counterion is the glutamic acid at position 181, where almost of all the pigments including vertebrate and invertebrate rhodopsins in the rhodopsin family have a glutamic acid or an aspartic acid. In vertebrate rhodopsins, however, Glu 181 does not act as a counterion, and the red-sensitive cone pigments have a histidine at this position, which serves as a chloride-binding site for red-shift of the absorption spectrum. These findings suggested that the role of Glu181 as a counterion may be weakened by the newly acquired counterion at position 113. Taken together with our recent studies on an invertebrate-type rhodopsin, the rhodopsin diversity was discussed from viewpoint of counterion.

  • PDF

First Record of Peregrinamor ohshimai (Mollusca: Bivalvia) from Korea

  • Kil, Hyun-Jong;Park, Tae-Seo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.25 no.2
    • /
    • pp.205-207
    • /
    • 2009
  • The specimens of Peregrinamor ohshimai, an ecto-commensal species to Upogebia major, were collected from the mudflat of Chilcheondo Is., Geoje-si, Gyungsangnam-do, Korea and diagnostic characters of P. ohshimai were analyzed. The genus Peregrinamor is reported in Korean fauna for the first time.

A Preliminary Study for the Distribution of Rocky Intertidal Fauna in the Korean Coastal Areas of the East Sea including Dokdo and Ulleungdo (독도.울릉도 및 동해안 암반조간대 무척추동물상의 분포 연구를 위한 예비연구)

  • Cha, Jae-Hoon;Kim, Mi-Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.225-231
    • /
    • 2013
  • To study the characteristics of rocky intertidal invertebrate fauna on the coastal areas of the East Sea, seven regions including Dokdo, Ulleungdo, Gyeongju, Pohang, Yeongdeok, Uljin, and Gangwondo, the common species ratio (%) and similarity index using Bray-Curtis similarity matrix were calculated. The contributed species for dissimilarity between Dokdo and the other East Sea's coastal areas were selected by using SIMPER. The common species ratio and the cluster analysis showed that Ulleungdo presented the highest similarity. However, Yeongdeok showed the highest similarity in the eastern costal areas, and Gangwondo showed the lowest one. However the cluster analysis revealed the discrimination of the rocky intertidal invertebrate community on Dokdo with others region caused by the particularity of rocky shores exposed to strong wave action and by the particular distribution of rocky intertidal invertebrate fauna in Dokdo.

A Revision of the Phylogeny of Helicotylenchus Steiner, 1945 (Tylenchida: Hoplolaimidae) as Inferred from Ribosomal and Mitochondrial DNA

  • Abraham Okki, Mwamula;Oh-Gyeong Kwon;Chanki Kwon;Yi Seul Kim;Young Ho Kim;Dong Woon Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.171-191
    • /
    • 2024
  • Identification of Helicotylenchus species is very challenging due to phenotypic plasticity and existence of cryptic species complexes. Recently, the use of rDNA barcodes has proven to be useful for identification of Helicotylenchus. Molecular markers are a quick diagnostic tool and are crucial for discriminating related species and resolving cryptic species complexes within this speciose genus. However, DNA barcoding is not an error-free approach. The public databases appear to be marred by incorrect sequences, arising from sequencing errors, mislabeling, and misidentifications. Herein, we provide a comprehensive analysis of the newly obtained, and published DNA sequences of Helicotylenchus, revealing the potential faults in the available DNA barcodes. A total of 97 sequences (25 nearly full-length 18S-rRNA, 12 partial 28S-rRNA, 16 partial internal transcribed spacer [ITS]-rRNA, and 44 partial cytochrome c oxidase subunit I [COI] gene sequences) were newly obtained in the present study. Phylogenetic relationships between species are given as inferred from the analyses of 103 sequences of 18S-rRNA, 469 sequences of 28S-rRNA, 183 sequences of ITS-rRNA, and 63 sequences of COI. Remarks on suggested corrections of published accessions in GenBank database are given. Additionally, COI gene sequences of H. dihystera, H. asiaticus and the contentious H. microlobus are provided herein for the first time. Similar to rDNA gene analyses, the COI sequences support the genetic distinctness and validity of H. microlobus. DNA barcodes from type material are needed for resolving the taxonomic status of the unresolved taxonomic groups within the genus.

Conservation of Biodiversity and Its Ecological Importance of Korean Paddy Field

  • Cho, Young-Son;Lee, Dong-Kyu;Choe, Zhin-Ryong;Han, Min-Soo;Pellerin, Kristie
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.497-504
    • /
    • 2006
  • Biodiversity is closely related to the conservation of ecosystems. Ecosystems provide more subtle, but equally essential, services. Microorganisms decompose human's waste and renew the soils that produce our food crops. Biodiversity in Korean paddies encompass 54 families and 107 species of freshwater invertebrates. In terms of the number of aquatic insects affected by different sources, the order starting with the highest population was swine slurry > chemical fertilizer > fresh straw with reduced fertilizers > control. The number of freshwater invertebrate and aquatic macro-invertebrate in surface water of the plots without insecticidal application were 2 and 2.1 times greater than in fields receiving insecticide applications, respectively. The soil microfungal flora of the 85 isolates paddy fields in Korea was 30 species in 13 genera and 11 isolates were unidentified yet. Agricultural policy should be changed to assist the conservation of biodiversity because until now the agricultural ecosystems have been negatively affected from the development of high-yield varieties to enhance food production, and the expansion of fertilizer and chemical use. For the conservation of agricultural ecosystems, agricultural practices with less investment and more resource saving, as well as enhancing the safety of agricultural and livestock products are essential. Finally, this paper was written for the contribution for the development of environmentally friendly farming systems with neighboring or whole ecosystems.

Characterization of a Myostatin-like Gene from the Scallop Patinopecten yessoensis

  • Kim, Hyun-Woo;Kim, Hak-Jun;Yoo, Myong-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2007
  • Myostatin (GDF8) is a growth factor that limits muscle tissue growth and development in vertebrates. We isolated a myostatin-like gene (Py-MSTN) from the marine invertebrate, the scallop Patinopecten yessoensis. Py-MSTN was highly expressed in the adductor muscle and in the gill unexpectedly. Amino acid analysis showed that Py-MSTN has 49% amino acid sequence identity and 64% similarity to human myostatin (Hs-MSTN), and 42% identity and 61% similarity to myoglianin, the only invertebrate homolog. These results indicated that Py-MSTN may be functionally similar to the vertebrate MSTN than the invertebrate homolog. Phylogenetic analysis suggested that Py-MSTN is an ancestral form of vertebrate MSTN and GDF11 and does not belong to other $TGF-{\beta}$ family members. Molecular modeling showed that Py-MSTN exhibits a similar tertiary structure to mammalian BMP7, a member of $TGF-{\beta}$ family. In addition, the amino acid residues which contact extracellular domain of the receptor were relavively conserved. Given these results, we propose that Py-MSTN is a functionally active member of the $TGF-{\beta}$ family and is involved In muscle growth and regulation.