Browse > Article

Invertebrate Models Used for Characterization of Drug Dependence and Development of Anti-Drug Dependent Agents  

Chang Hyun-Sook (Department of Child Studies, Korea Nazarene University)
Kim Ha-Won (Department of Life Sciences, University of Seoul)
Lee Dong-Hee (Department of Life Sciences, University of Seoul)
Publication Information
Biomolecules & Therapeutics / v.14, no.1, 2006 , pp. 1-10 More about this Journal
Abstract
Drug dependence deals a heavy socioeconomic burden to the society. For adolescents, the damage from drug dependence is greater than adults considering their higher susceptibility to drug effect and increasing chance for violence leading to criminal punishment process. Habitual drug use depends on genetic and environmental factors and the complex interactions between the two. Mammalian model systems have been useful in understanding the neurochemical and cellular impacts of abused drugs on specific regions of the brain, and in identifying the molecular targets of drugs. More elucidation is required whether biological effects of drugs actually cause the habitual dependence at the cellular level. Although there is much insight available on the nature of drug abuse problems, none of the systems designed to help drug dependent individuals is efficient in screening functional ingredients of the drug, and thus resulting in the failure of helping drug dependent individuals recover from drug dependence. Alternative model systems draw the attention of researchers, such as the invertebrate model systems of nematodes (Caenorhabditis elegans) and fruit flies (Drosophila melanogaster). These models should provide new insight into the mechanisms leading to the behavior of drug users (even functional studies analyzing molecular mechanism), and screening useful components to help remove drug dependence among drug users. The relatively simple anatomy and gene expression of the invertebrate model systems should enable researchers to coordinate current knowledge on drug abuse. Furthermore, the invertebrate model systems should facilitate advance in experiments on the susceptibility of specific genetic backgrounds and the interaction between genetic factors to drug dependence.
Keywords
Drug dependence; invertebrate; cocaine; alcohol, dopamine; Drosophila; C. elegans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berke, J. D. and Hyman, S. E. (2000). Dependence, dopamine, and the molecular mechanisms of memory. Neuron 25, 515-532   DOI   ScienceOn
2 Depiereux, E., Hougouto, N., Lechien, J., Libion-Mannaert, M. and Di Chiara, G. (2000). Role of dopamine in the behavioral actions of nicotine related to dependence. Eur. J. Pharmacol. 393, 295-314   DOI   ScienceOn
3 Lewohl, J. M., Wilson, W. R., Mayfield, R. D., Brozowski, S. J., Morrisett, R. A. and Harris, R. A. (1999). G-protein-coupled inwardly rectifying potassium channels are target of alcohol action. Nat. Neurosci. 2, 1084-1090   DOI   ScienceOn
4 Andretic, R. and Hirsh, J. (2000). Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 1873-1878
5 Bainton, R. J., Tsai, L. T. -Y., Singh, C. M., Moore, M. S., Neckameyer, W.S. and Heberlein, U. (2000). Dopamine modulates acute responses to cocaine, nicotine, and ethanol in Drosophila. Curr. Biol. 10, 187-194   DOI   ScienceOn
6 Bargmann, C. I. (2001). High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome BioI. 2, 1005.1-1005.4
7 Ranganathan, R., Sawin, E. R., Trent, C. and Horvitz, H. R. (2001). Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J. Neurosci. 21, 5871-5884   DOI
8 Dubnau, J., Grady, L., Kitamoto, T. and Tully, T. (2001). Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 476-480   DOI   ScienceOn
9 Dudley, R. (2000). Evolutionary origins of human alcoholism in primate frugivory. Q. Rev. Biol. 75, 3-15   DOI   ScienceOn
10 Duerr, J. S., Gaskin, J. and Rand, J. B. (2002). Identified neurons in C. elegans coexpress vesicular transporters for acetylcholine and monoarnines. Am. J. Physiol. Cell Physiol. 280, 1616-1622
11 Kalidas, S. and Smith, D. P. (2002). Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33,177-184   DOI   ScienceOn
12 Beckman, M. L., Parker, J. C., Sheffield, E. B., Whitworth, T. L., Quick, M. W. and Lester, R. A. (2000). Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Mol. Phannacol. 55, 432-443
13 Giorgetti, M. and Zhdanova, I. V. (2000). Chronic cocaine treatment induces dysregulation in the circadian pattern of rats $\circ\AE$feeding behavior. Brain Res. 877, 170-175   DOI   ScienceOn
14 Gomez, M., De Castro, E., Guarin, E., Sasakura, H., Kuhara, A., Mori, I., Bartfai, T., et al. (2001). Ca2signaling via the neuronal calcium sensor-l regulates associative learning and memory in C. elegans. Neuron 30, 241-248   DOI   ScienceOn
15 Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol. 47, 81-92   DOI   ScienceOn
16 Wise, R. A. and Bozarth, M. A. (1987). A psychomotor stimulant theory of dependence. Psychol. Rev. 94, 469-492   DOI   ScienceOn
17 Martin, J-R, Raabe, T. and Heisenberg, M. (1999). Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A. 185, 277-288   DOI
18 McClung, C. and Hirsh, J. (1999). The trace amine tyramine is essential for sensitization to cocaine in Drosophila. Curr. Biol. 9, 853-860   DOI   ScienceOn
19 Mori, I. (1999). Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu. Rev. Genet. 33, 399-422   DOI   ScienceOn
20 Morrison, G. E., Wen, Y. J., Runciman, S. and van der Kooy, D. (1999). Olfactory associative learning in Caenorhabditis elegans is impaired in lrn-l and Irn-2 mutants. Behav. Neurosci. 113,358-367   DOI   ScienceOn
21 Nikaido, T., Moriya, T., Takabayashi, R., Akigama, M. and Shibata, S. (1999). Sensitization of methamphetamine-induced disorganization of daily locomotor activity rhythm in male rats. Brain Res. 845, 112-116   DOI   ScienceOn
22 Osterwalder, T., Yoon, K. S., White, B. H. and Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA 98, 12596-12601
23 Park, S. K., Sedore, S. A., Cronmiller, C. and Hirsh, J. (2000). PKARII- deficient Drosophila are viable but show developmental, circadian and drug response phenotypes. J. Biol. Chem. 275, 20588-20596   DOI   ScienceOn
24 Porzgen, P., Park, S. K., Hirsh, J., Sonders, M. S. and Amara, S. G. (2001). The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines. Mol. Pharmacol. 59, 83-95   DOI
25 Risinger, F. O., Freeman, P. A., Rubinstein, M., Low, M. J. and Grandy, D. K. (2000). Lack of operant ethanol self-administration indopamine D2 receptor knockout mice. Psychophannacology (Berlin) 152, 343-350   DOI   ScienceOn
26 Robinson, T. E. and Berridge, K. C. (2001). Incentive-sensitization and dependence. Addiction 96, 103-114   DOI   ScienceOn
27 Rodan, A. R., Kiger, J. A. and Heberlein, U. (2002). Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J. Neurosci., in press
28 Roeder, T. (1999). Octopamine in invertebrates. Prog. Neurobiol. 59, 533-561   DOI   ScienceOn
29 Sora, I., Hall, F. S., Andrews, A. M., Itokawa, M., Li, X. F., Wei, H. B., Wichems, C., et al. (2001). Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc. Natl. Acad. Sci. USA 98, 5300-5305
30 Scholz, H., Ramond, J., Singh, C. M. and Heberlein, U. (2000). Functional ethanol tolerance in Drosophila. Neuron 28, 261-271   DOI   ScienceOn
31 Stebbins, M. J., Urlinger, S., Byrne, G., Bello, B., Hillen, W. and Yin, J. C. (2001). Tetracycline-inducible systems for Drosophila. Proc. Natl. Acad. Sci. USA 98, 10775-10780
32 Thomas, J. H. (2001). Nematodes are smarter than you think. Neuron 30, 7-8   DOI   ScienceOn
33 Torres, G. and Horowitz, J. M. (1999). Cocaetylene synthesis in Drosophila. Neurosci. Letters 263, 201-204   DOI   ScienceOn
34 Torres, G. and Horowitz, J. M. (1999). Drugs of abuse and brain gene expression. Psychosomatic Medicine 61, 630-650   DOI
35 Wise, R. A. (2000). Dependence becomes a brain disease. Neuron 26, 27-33   DOI   ScienceOn
36 Rosay, P., Armstrong, J. D., Wang, Z. and Kaiser, K. (2001). Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron 30, 759-770   DOI   ScienceOn
37 Rocha, B. A., Fumagalli, F., Gainetdinov, R. R., Jones, S. R., Ator, R., Giros, B., Miller, G. W., et al. (1998). Cocaine self-administration in dopamine-transporter knockout mice. Nat. Neurosci. 1, 132-137   DOI   ScienceOn
38 Schuckit, M. A. (2000). Genetics of the risk for alcoholism. Am. J. Addict. 9, 103-112   DOI
39 Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811   DOI   ScienceOn
40 McClung, C. and Hirsh, J. (1998). Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Curr. Biol. 8, 109-112   DOI   ScienceOn
41 Parr, J., Large, A., Wang, X., Fowler, S. C., Ratzlaff, K. L. and Ruden, D. M. (2001). The inebri-actometer: a device for measuring the locomotor activity of Drosophila exposed to ethanol vapor. J. Neurosci. Methods 107, 93-99   DOI   ScienceOn
42 Spanagel, R., Weiss, F.. (1999). The dopamine hypothesis of reward: past and current status. Trends Neurosci. 22, 521- 527   DOI   ScienceOn
43 Kerr, R., Lev-Ram, V., Baird, G., Vincent, P., Tsien, R. Y. and Schafer, W. R. (2000). Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583-594   DOI   ScienceOn
44 Richmond, J. E. and Jorgensen, E. M. (1999). One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791-797   DOI   ScienceOn