• 제목/요약/키워드: inversion layer

Search Result 280, Processing Time 0.028 seconds

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.

Markov Chain Monte Carlo Simulation to Estimate Material Properties of a Layered Half-space (층상 반무한 지반의 물성치 추정을 위한 마르코프 연쇄 몬테카를로 모사 기법)

  • Jin Ho Lee;Hieu Van Nguyen;Se Hyeok Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.203-211
    • /
    • 2023
  • A Markov chain Monte Carlo (MCMC) simulation is proposed for probabilistic full waveform inversion (FWI) in a layered half-space. Dynamic responses on the half-space surface are estimated using the thin-layer method when a harmonic vertical force is applied. Subsequently, a posterior probability distribution function and the corresponding objective function are formulated to minimize the difference between estimations and observed data as well as that of model parameters from prior information. Based on the gradient of the objective function, a proposal distribution and an acceptance probability for MCMC samples are proposed. The proposed MCMC simulation is applied to several layered half-space examples. It is demonstrated that the proposed MCMC simulation for probabilistic FWI can estimate probabilistic material properties such as the shear-wave velocities of a layered half-space.

Simulation of Water Temperature in the Downstream According to Withdrawal Types of Dam using EFDC Model (댐 방류형태가 하류 하천 수온변화에 미치는 영향 예측)

  • Park, Jae-Chung;Yoon, Jin-Hyuk;Jung, Yong-Moon;Son, Ji-Yeon;Song, Young-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.715-724
    • /
    • 2012
  • In this study, we simulated water temperature in the downstream according to withdrawal types of dam using EFDC model. Three scenarios were assumed as water was released from the surface layer, the middle layer, and the bottom layer at intervals of 10m depth. In case of the surface layer withdrawal, the water temperature rose from March and lowered gradually after it reached a peak in August. The middle and the bottom layers effluence temperatures were lower than the surface layer temperature by maximum $15.9^{\circ}C$(in July), but after September, temperature inversion appeared. It was advantageous for the surface layer withdrawal to decrease cold damage and fog in downstream area and was possible to the middle and the bottom layers withdrawal from August to September. However, the reliability of model should be improved by accumulating the real-time information of water temperature.

A study on surface wave dispersion due to the effect of soft layer in layered media

  • Roy, Narayan;Jakka, Ravi S.;Wason, H.R.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.775-791
    • /
    • 2017
  • Surface wave techniques are widely used as non-invasive method for geotechnical site characterization. Field surface wave data are collected and analyzed using different processing techniques to generate the dispersion curves, which are further used to extract the shear wave velocity profile by inverse problem solution. Characteristics of a dispersion curve depend on the subsurface layering information of a vertically heterogeneous medium. Sometimes soft layer can be found between two stiff layers in the vertically heterogeneous media, and it can affect the wave propagation dramatically. Now most of the surface wave techniques use the fundamental mode Rayleigh wave propagation during the inversion, but this may not be the actual scenario when a soft layer is present in a vertically layered medium. This paper presents a detailed and comprehensive study using finite element method to examine the effect of soft layers which sometimes get trapped between two high velocity layers. Determination of the presence of a soft layer is quite important for proper mechanical characterization of a soil deposit. Present analysis shows that the thickness and position of the trapped soft layer highly influence the dispersion of Rayleigh waves while the higher modes also contribute in the resulting wave propagation.

Use of Audio-Band on the Interpretation of Magnetotelluric Data (MT 탐사자료의 해석에서 AMT 대역 자료의 효용성)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 2006
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeju Island has been carried out. Broad band MT sounding curves with good quality could be gathered by performing audio-frequency magnetotelluric (AMT) survey during the MT survey and by operating the remote reference in Kyushu Island, Japan. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands for the field data as well as for the data from numerical 2-D modeling said that high frequency information from AMT survey can be useful for interpreting not only the shallow part but also the deep structures, especially when the formation is resistive. The 2-D inversion models of field data show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. It can be either the effect of the surrounding sea water, or the structures due to ancient volcanic events. But unfortunately by now, we do not have any further information about the anomaly.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

A study on the estimation of bubble size distribution using an acoustic inversion method (음향 역산법을 이용한 기포의 크기 분포 추정 연구)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.151-162
    • /
    • 2020
  • This paper presents an acoustic inversion method for estimating the bubble size distribution. The estimation error of the attenuation coefficient represented by a Fredholm integral equation of the first kind is defined as an objective function, and an optimal solution is found by applying the Levenberg-Marquardt (LM) method. In order to validate the effectiveness of the inversion method, numerical simulations using two types of bubble distribution are performed. In addition, a series of experiments are carried out in a water tank (1.0 m × 0.54 m × 0.6 m), using bubbles generated by three different generators. Images of the distributed bubbles are obtained by a high-speed camera, and the insertion losses of the bubble layer are measured using a source and a hydrophone. The image is post-processed to glance a distribution characteristics of each bubble generator. Finally, the size distribution of bubbles is estimated by applying the inversion method to the measured insertion loss. From the inversion results, it was observed that the number of bubbles increases exponentially as the bubble size decreases, and then increases again after the local peak at 70 ㎛ - 120 ㎛.

Application of Effective Regularization to Gradient-based Seismic Full Waveform Inversion using Selective Smoothing Coefficients (선택적 평활화 계수를 이용한 그래디언트기반 탄성파 완전파형역산의 효과적인 정규화 기법 적용)

  • Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • In general, smoothing filters regularize functions by reducing differences between adjacent values. The smoothing filters, therefore, can regularize inverse solutions and produce more accurate subsurface structure when we apply it to full waveform inversion. If we apply a smoothing filter with a constant coefficient to subsurface image or velocity model, it will make layer interfaces and fault structures vague because it does not consider any information of geologic structures and variations of velocity. In this study, we develop a selective smoothing regularization technique, which adapts smoothing coefficients according to inversion iteration, to solve the weakness of smoothing regularization with a constant coefficient. First, we determine appropriate frequencies and analyze the corresponding wavenumber coverage. Then, we define effective maximum wavenumber as 99 percentile of wavenumber spectrum in order to choose smoothing coefficients which can effectively limit the wavenumber coverage. By adapting the chosen smoothing coefficients according to the iteration, we can implement multi-scale full waveform inversion while inverting multi-frequency components simultaneously. Through the successful inversion example on a salt model with high-contrast velocity structures, we can note that our method effectively regularizes the inverse solution. We also verify that our scheme is applicable to field data through the numerical example to the synthetic data containing random noise.

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

Pad and Parasitic Modeling for MOSFET Devices (MOSFET 기생성분 모델링)

  • 최용태;김기철;김병성
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.181-184
    • /
    • 1999
  • This paper presents the accurate deembeding method for pad and parasitics of MOSFET device. rad effects are deembedded using THRU LINE, which is much simpler method without laborious fitting procedure compared with conventional OPEN and SHORT pad modeling. Parasitic resistance extraction uses the algebraic relation between increments of inversion layer charge and oxide capacitance. It is especially adequate for insulating gate junction device. Extracted parasitics are verified through comparing modeled and measured S parameters.

  • PDF