• Title/Summary/Keyword: inversion height

Search Result 75, Processing Time 0.025 seconds

On the Low Level Strong Wind Occurring at the Downwind Side of the Kumjeong Mountain. (금정산 풍하측 저고도의 강풍 현상)

  • 임상진;서광수
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.713-718
    • /
    • 1996
  • We identified two characteristic turbulent flow cases, weakening and strengthening, which appear at the downwind side. Observations were made two times, Dec. 2-3. 1995 and Feb. 13-14. 1996 at Pusan National University site located downwind side of Kumjeong mountain. Meteorological observation system, tethersonde, was adopted to present observation. In the case of the west wind which blows perpendicular to Sanghak mountain located westward from the site, the wind speed highly increased in exponential with height. Therefore, the low level wind speed was so weak just like Taylor(1988)'s review. While the wind speed was intensified at 200-400m layer when the northwest wind blows from the continental Siberian high. We suppose 기 is because of the strong vertical convergence of flow between the surface inversion layer and the upper one, and also the horizontal convergence along the saddle and valley between the two mountains, Kumjeong and Sanghak-because of Bernoulli's effect. The inversion layer existed at surface-l00m and 500-600m level and the strong wind existed at about 200-400m layer.

  • PDF

A Numerical Simulation of Heat Flow Field for Heat Island Effect Analysis to Air Pollutants Dispersion in Apartment Complex (아파트 단지내의 열섬효과가 대기오염물질 확산에 미치는 영향 해석을 위한 열유동장 수치모의)

  • Jang Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.577-582
    • /
    • 2005
  • Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.

Ambient Levels of CO and PM10 at Low- and High-floor Apartments in Industrial Complexes (산업단지 내 저층과 고층 아파트의 외기 중 호흡성분진과 일산화탄소 수준)

  • Jo, Wan-Kuen;Lee, Joon-Yeob
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.719-725
    • /
    • 2006
  • Since low-floor apartments ate vertically closer to patting lots and roadways, it is hypothesized that residents in low-floor apartments may be exposed to elevated ambient levels of motet vehicle emissions compared to residents in high-floor apartments. The present study examined this hypothesis by measuring two motor vehicle source-related pollutants(CO and PM10) in ambient air of high-rise apartment buildings within the boundary of industrial complexes according to atmospheric stability The ambient air concentrations of CO and PM10 were higher for low-floor apartments than for high-floor apartments, regardless of atmospheric stability, The median concentration ratio of the low-floor air to high-floor alt ranged from 1.3 to 2.0, depending upon atmospheric stabilities, seasons and compounds. Moreover, the CO and PM10 concentrations were significantly higher in the winter and in the summer, regardless of the Hoot height. Atmospheric stability also was suggested to be important for the residents' exposure of high-rise apartment buildings to both CO and PM10. The median ratios of surface inversion air to non-surface inversion air ranged from 1.2 to 1.7 and from 1.0 to 1.6 lot PM10 and CO, respectively, depending upon seasons. Conclusively, these parameters(apartment floor height, season, and atmospheric stability) should be considered when evaluating the exposure of residents, living in high-rise apartment buildings, to CO and PM10. Meanwhile, the median PMl0 outdoor concentrations were close to or higher than the Korean annual standards for PM10, and the maximum PM10 concentrations substantially exceeded the Korean PM10 standard, thus suggesting the need for a management strategy for ambient PM 10. Neither the median nor the maximum outdoor CO concentrations, however, were higher than the Korean CO standard.

The Effects of Chronic Ankle Instability on Postural Control during Forward Jump Landing (전방 점프 착지 시 만성 발목 불안정성이 자세 조절에 미치는 영향)

  • Kim, Kew-wan;Jeon, Kyoungkyu;Park, Seokwoo;Ahn, Seji
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2022
  • Objective: The purpose of this study was to investigate how the chronic ankle instability affects postural control during forward jump landing. Method: 20 women with chronic ankle instability (age: 21.7 ± 1.6 yrs, height: 162.1 ± 3.7 cm, weight: 52.2 ± 5.8 kg) and 20 healthy adult women (age: 21.8 ± 1.6 yrs, height: 161.9 ± 4.4 cm, weight: 52.9 ± 7.2 kg) participated in this study. For the forward jump participants were instructed to stand on two legs at a distance of 40% of their body height from the center of force plate. Participants were jump forward over a 15 cm hurdle to the force plate and land on their non-dominant or affected leg. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and joint angle, vertical ground reaction force and center of pressure. All statistical analyses were using SPSS 25.0 program. The differences in variables between the two groups were compared through an independent sample t-test, and the significance level was to p < .05. Results: In the hip and knee joint angle, the CAI group showed a smaller flexion angle than the control group, and the knee joint valgus angle was significantly larger. In the case of ankle joint, the CAI group showed a large inversion angle at all events. In the kinetic variables, the vGRF was significantly greater in the CAI group than control group at IC and mGRF. In COP Y, the CAI group showed a lateral shifted center of pressure. Conclusion: Our results indicated that chronic ankle instability decreases the flexion angle of the hip and knee joint, increases the valgus angle of the knee joint, and increases the inversion angle of the ankle joint during landing. In addition, an increase in the maximum vertical ground reaction force and a lateral shifted center of pressure were observed. This suggests that chronic ankle instability increases the risk of non-contact knee injury as well as the risk of lateral ankle sprain during forward jump landing.

Characteristics of Ni/Co Composite Silicides for Poly-silicon Gates (게이트를 상정한 니켈 코발트 복합실리사이드 박막의 물성연구)

  • Kim, Sang-Yeob;Jung, Young-Soon;Song, Oh-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.149-154
    • /
    • 2005
  • We fabricated Ni/Co(or Co/Ni) composite silicide layers on the non-patterned wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\~}1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the poly silicon inversion due to fast metal diffusion lead to decrease silicide thickness. Our results imply that we should consider the serious inversion and fast transformation in designing and process f3r the nano-height fully cobalt nickel composite silicide gates.

  • PDF

Comparative Analysis of Observation and NWP Data of Downslope Windstorm Cases during 3-Dimensional Meteorological Observation Project in Yeongdong Region of Gangwon province, South Korea in 2020 (2020 강원영동 공동 입체기상관측 기간 강풍 사례에 대한 관측자료와 수치모델 비교 분석)

  • Kwon, Soon-Beom;Park, Se-Taek
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.395-404
    • /
    • 2021
  • In order to investigate downslope windstorm by using more detailed observation, we observed 6 cases at 3 sites - Inje, Yongpyeong, and Bukgangneung - during "3-D Meteorological Observation Project in Yeongdong region of Gangwon province, South Korea in 2020." The results from analysis of the project data were as follows. First, AWS data showed that a subsidence inversion layer appeared in 800~700 hPa on the windward side and 900~850 hPa on the leeward side. Second, before strong wind occurred, the inversion layer had descended to about 880~800 hPa. Third, with mountain wave breaking, downslope wind was intensified at the height of 2~3 km above sea level. After the downslope wind began to descend, the subsidence inversion layer developed. When the subsidence inversion layer got close to the ground, wind peak occurred. In general, UM (Unified Model) GDAPS (Global Data Assimilation Prediction System) have had negative bias in wind speed around peak area of Taebaek mountain range, and positive bias in that of East Sea coast area. The stronger wind blew, the larger the gap between observed and predicted wind speed by GDAPS became. GDAPS predicted strong p-velocity at 0600 LST 25 Apr 2020 (4th case) and weak p-velocity at 2100 LST 01 Jun 2020 (6th case) on the lee-side of Taebaek mountain range near Yangyang. As hydraulic jump theory was proved, which is known as a mechanism of downslope windstorm in Yeongdong region, it was confirmed that there is a relationship between p-velocity of lee-side and wind speed of eastern slope of Taebaek mountain range.

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

Investigation of Correlations of Double Inversion Recovery and MR Spectroscopy on Breast MR Imaging (유방 자기공명영상에의 이중반전회복기법과 자기공명분광영상법의 상관관계 연구)

  • Ryu, Jung Kyu;Rhee, Sun Jung;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.34-42
    • /
    • 2014
  • Purpose : To evaluate the correlation of lesion-to-normal ratio (LNR) of signal intensity from double inversion recovery MR imaging and total choline-containing compound (tCho) resonance from single voxel MR spectroscopy in breast cancers. Materials and Methods: Between August 2008 and December 2009, 28 patients who were diagnosed as breast cancer and had undergone both double inversion recovery (DIR) MR imaging and MR spectroscopy (MRS) were included in this study. The signal intensities of the lesion (L) and ipsilateral normal breast tissue (N) were measured in region of interest of each breast cancer in DIR and contrast enhance MR image (CE-T1WI) to calculate the LNR value for each technique. MRS was performed using single-voxel MR spectroscopy. The height, width and area of tCho resonance were compared with each LNR of DIR and CE-T1WI. We used Pearson's correlation coefficient(r) for correlation analysis and the significance level was p=0.05. Results: There was no statistically significant correlation between LNR of CE-T1WI and height (r=-0.322, p=0.094), width (r=-0.233, p=0.232) and area (r=-0.309, p=0.109) of MRS tCho. There was no statistically significant correlation between LNR of DIR and height (r=0.067, p=0.735), width (r=-0.287, p=0.139) and area (r=0.012, p=0.953) of MRS tCho, either. The Pearson's correlation coefficient was 0.186 between LNRs of CET1WI and DIR (p=0.344). Conclusion: There was no statistically significant correlation between LNR of DIR and relative amount of tCho resonance of MRS.

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF

A numerical study of the orographic effect of the Taebak mountains on the increase of the downslope wind speed near Gangnung area (태백산맥의 지형적인 효과와 관련된 강릉 지역의 강풍 사례에 대한 수치모의 연구)

  • 이재규
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1245-1254
    • /
    • 2003
  • A numerical simulation for 11 February 1996 has been done to grasp main mechanisms of the occurrence of strong downslope winds near Gangnung area. The simulation performed by using ARPS (Advanced Regional Prediction System) showed that enhanced surface winds were not related with a reflection of vertically propagating gravity waves. Froude numbers were about 1.0, 0.4 and 0.6 for the atmosphere above Daekwanryoung and above a place located 220km upstream, and above another place located 230km downstream from the Taebak mountains, respectively. This suggested that as a subcritical flow ascended the upslope side of the Taebak mountains, Froude numbers would tend to increase according to the increase in wind speed, and near the crest the flow would become supercritical and continue to accelerate as it went down the downslope side until it was adapted back to the ambient subcritical conditions in a turbulent hydraulic jump. Simulated Froude numbers corroborated the hydraulic jump nature of the strong downslope wind. In addition, the inversion was found near the mountain top height upstream of the mountains, and it was favorable for the occurrence of strong downslope winds.