DOI QR코드

DOI QR Code

Investigation of Correlations of Double Inversion Recovery and MR Spectroscopy on Breast MR Imaging

유방 자기공명영상에의 이중반전회복기법과 자기공명분광영상법의 상관관계 연구

  • Ryu, Jung Kyu (Department of Radiology, Kyung Hee University Hospital at Gandong, College of Medicine, Kyung Hee University) ;
  • Rhee, Sun Jung (Department of Radiology, Kyung Hee University Hospital at Gandong, College of Medicine, Kyung Hee University) ;
  • Jahng, Geon-Ho (Department of Radiology, Kyung Hee University Hospital at Gandong, College of Medicine, Kyung Hee University)
  • 류정규 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 이선정 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 장건호 (경희대학교 의과대학 강동경희대학교병원 영상의학과)
  • Received : 2014.02.03
  • Accepted : 2014.03.12
  • Published : 2014.03.30

Abstract

Purpose : To evaluate the correlation of lesion-to-normal ratio (LNR) of signal intensity from double inversion recovery MR imaging and total choline-containing compound (tCho) resonance from single voxel MR spectroscopy in breast cancers. Materials and Methods: Between August 2008 and December 2009, 28 patients who were diagnosed as breast cancer and had undergone both double inversion recovery (DIR) MR imaging and MR spectroscopy (MRS) were included in this study. The signal intensities of the lesion (L) and ipsilateral normal breast tissue (N) were measured in region of interest of each breast cancer in DIR and contrast enhance MR image (CE-T1WI) to calculate the LNR value for each technique. MRS was performed using single-voxel MR spectroscopy. The height, width and area of tCho resonance were compared with each LNR of DIR and CE-T1WI. We used Pearson's correlation coefficient(r) for correlation analysis and the significance level was p=0.05. Results: There was no statistically significant correlation between LNR of CE-T1WI and height (r=-0.322, p=0.094), width (r=-0.233, p=0.232) and area (r=-0.309, p=0.109) of MRS tCho. There was no statistically significant correlation between LNR of DIR and height (r=0.067, p=0.735), width (r=-0.287, p=0.139) and area (r=0.012, p=0.953) of MRS tCho, either. The Pearson's correlation coefficient was 0.186 between LNRs of CET1WI and DIR (p=0.344). Conclusion: There was no statistically significant correlation between LNR of DIR and relative amount of tCho resonance of MRS.

목적 : 유방암의 이중반전회복 자기공명영상 (double inversion recovery, DIR) 신호와 자기공명분광영상기법 (MR spectroscopy, MRS)에서 얻은 단일 화적소 콜린 양과 상관관계가 있는가를 알아보고자 하였다. 대상 및 방법 : 2008년 8월부터 2009년 12월까지 유방암으로 진단된 환자 중 이중반전회복 자기공명영상과 자기공명분광영상기법 모두를 시행한 28명의 환자를 대상으로 하였다. 이중반전회복영상과 조영증강 T1강조영상 (CE-T1WI)에서 종양에 해당하는 관심영역에서의 신호강도를 삼차원으로 얻었으며 병변 (L)과 동측 정상 섬유선 조직 (N)에 대한 용적을 같은 레벨에서 병변 대 정상조직의 신호강도 비 (LNR)를 구하였다. 자기공명분광영상 데이터는 단일복셀분광방법인 중점분해분광학을 이용하였다. 자기공명분광영상기법에서 총 콜린 공명의 높이, 폭, 면적과 조영증강 T1강조영상에서 병변 대 정상 조직의 신호강도 비 값, 그리고 이중반전회복 자기공명영상의 병변 대 정상조직의 신호강도비 값 간의 상관 관계에 대해 Pearson 상관분석을 시행하였고 유의수준은 p=0.05이었다. 결과 : 조영증강 T1강조영상의 병변 대 정상 조직의 신호강도 비 값과 자기공명분광영상기법에서 콜린의 높이 (r=-0.322, p= 0.094), 폭 (r=-0.233, p=0.232), 면적 (r=-0.309 p=0.109)값과, 또한 이중반전회복 자기공명영상의 병변 대정상 조직의 신호강도 비 값과 자기공명분광영상기법 콜린의 높이 (r=0.067, p=0.735), 폭 (r=-0.287, p=0.139), 면적 (r=0.012 p=0.953) 값 사이에 상관성은 통계적으로 유의하지 않았다. 조영증강 T1강조영상의 병변 대 정상조직의 신호강도 비 값과 이중반전회복 자기공명영상의 병변 대 정상조직의 신호강도 비 값 사이에서도 Pearson상관계수 0.186으로 두 군간에 관련성은 없었다 (p=0.344). 결론 : 이중반전회복 자기공명영상에서 유방암의 병변 대 정상조직간 신호강도 비와 자기공명분광영상에서의 콜린 공명의 상대적인 양은 서로 상관관계를 보이지 않았다.

Keywords

References

  1. Huang W, Fisher PR, Dulaimy K, Tudorica LA, O'Hea B, Button TM. Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 2004;232:585-591 https://doi.org/10.1148/radiol.2322030547
  2. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007;57:75-89 https://doi.org/10.3322/canjclin.57.2.75
  3. Yen YF, Han KF, Daniel BL, et al. Dynamic breast MRI with spiral trajectories: 3D versus 2D. J Magn Reson Imaging 2000; 11:351-359 https://doi.org/10.1002/(SICI)1522-2586(200004)11:4<351::AID-JMRI2>3.0.CO;2-L
  4. Sinha S, Sinha U. Functional magnetic resonance of human breast tumors. Ann N Y Acad Sci 2002;980:95-115 https://doi.org/10.1111/j.1749-6632.2002.tb04891.x
  5. Liberman L, Morris EA, Lee MJY, et al. Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 2002;179:171-178 https://doi.org/10.2214/ajr.179.1.1790171
  6. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 2001;220:13-30 https://doi.org/10.1148/radiology.220.1.r01jl3113
  7. Gruber S, Debski BK, Pinker K, et al. Three-dimensional proton MR spectroscopic imaging at 3 T for the differentiation of benign and malignant breast lesions. Radiology 2011;261:752-761 https://doi.org/10.1148/radiol.11102096
  8. Yabuuchi H, Matsuo Y, Okafuji T, et al. Enhanced mass on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusionweighted MR images. J Magn Reson Imaging 2008;28:1157-1165 https://doi.org/10.1002/jmri.21570
  9. Kim JH, Ryu JK, Jahng GH, Song JY. Double inversion recovery MR imaging of the breast: efficacy in detection of breast cancer. J Magn Reson Imaging 2014;39:51-58 https://doi.org/10.1002/jmri.24115
  10. Bartella L, Morris EA, Dershaw DD, et al. Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 2006;239:686-692 https://doi.org/10.1148/radiol.2393051046
  11. Meisamy S, Bolan PJ, Baker EH, et al. Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 2005;236:465-475 https://doi.org/10.1148/radiol.2362040836
  12. Jacobs MA, Barker PB, Bottomley PA, Bhujwalla Z , Bluemke DA . Proton magnetic resonance spectroscopic imaging of human breast cancer: a preliminary study. J Magn Reson Imaging 2004;19:68-75 https://doi.org/10.1002/jmri.10427
  13. Sardanelli F, Fausto A, Di Leo G, de Nijs R, Vorbuchner M, Podo F. In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol 2009;192:1608-1617 https://doi.org/10.2214/AJR.07.3521
  14. Bartella L, Huang W. Proton (1H) MR Spectroscopy of the Breast. Radiographics 2007;27:S241-S252 https://doi.org/10.1148/rg.27si075504
  15. Shin HJ, Baek HM, Ahn JH, et al. Prediction of pathologic response to neoadjuvant chemotherapy in patients with breast cancer using diffusion-weighted imaging and MRS. NMR Biomed 2012;25:1349-1359 https://doi.org/10.1002/nbm.2807
  16. Turetschek K, Wunderbaldinger P, Bankier AA, et al. Double inversion recovery imaging of the brain: initial experience and comparison with fluid attenuated inversion recovery imaging. Magn Reson Imaging 1998;16:127-135 https://doi.org/10.1016/S0730-725X(97)00254-3
  17. Redpath T, Smith F. Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br J Radiol 1994;67:1258 https://doi.org/10.1259/0007-1285-67-804-1258
  18. Meara SJP, Barker GJ. Evolution of the longitudinal magnetization for pulse sequences using fast spin echo readout: application to fluid attenuated inversion recovery and double inversion recovery sequences. Magn Reson Med 2005;54:241-245 https://doi.org/10.1002/mrm.20541
  19. Rakow PR, Daniel B, Yu H, Sawyer GA, Glover GH. Relaxation times of breast tissue at 1.5 T and 3T measured using IDEAL. J Magn Reson Imaging 2006;23:87-91 https://doi.org/10.1002/jmri.20469
  20. Males RG, Vigneron DB, Star-Lack J, et al. Clinical application of BASING and spectral/spatial water and lipid suppression pulses for prostate cancer staging and localization by in vivo 3D 1H magnetic resonance spectroscopic imaging. Magn Reson Med 2000;43:17-22 https://doi.org/10.1002/(SICI)1522-2594(200001)43:1<17::AID-MRM3>3.0.CO;2-6
  21. Lauenstein TC, Sharma P, Hughes T, Heberlein K, Tudorascu D, Martin DR. Evaluation of optimized inversion-recovery fatsuppression techniques for T2-weighted abdominal MR imaging. J Magn Reson Imaging 2008;27:1448-1454 https://doi.org/10.1002/jmri.21350
  22. Begley JK, Redpath TW, Bolan PJ, Gilbert FJ. In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Res 2012;14:207-216 https://doi.org/10.1186/bcr3132
  23. Podo F: Tumour phospholipid metabolism. NMR Biomed 1999;12:413-439 https://doi.org/10.1002/(SICI)1099-1492(199911)12:7<413::AID-NBM587>3.0.CO;2-U
  24. Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether phospholipid synthesis. Cancer Res 2002;62:1966-1970
  25. Su MY, Baik HM, Yu HJ, Chen JH, Mehta RS, Nalcioglu O. Comparison of choline and pharmacokinetic parameters in breast cancer measured by MR spectroscopic imaging and dynamic contrast enhanced MRI. Technol Cancer Res Treat 2006;5:401-410
  26. Baek HM, Yu HJ, Chen JH, Nalcioglu O, Su MY. Quantitative correlation between (1)H MRS and dynamic contrast-enhanced MRI of human breast cancer. Magn Reson Imaging 2008;26: 523-531 https://doi.org/10.1016/j.mri.2007.10.002