• Title/Summary/Keyword: inverse model

Search Result 1,304, Processing Time 0.023 seconds

An Inverse Dynamic Analysis of Lower Limbs During Gait (보행 중 하지 관절의 역동역학 해석)

  • 송성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • An inverse dynamic model of lower limbs is presented to calculate joint moments during gait. The model is composed of 4 segments with 3 translational joints and 12 revolute joints. The inverse dynamic method is based on Newton-Euler formalism. Kinematic data are obtained from 3 dimensional trajectories of markers collected by a motion analysis system. External forces applied on the foot are measured synchronously using force plate. The use of developed model makes it possible to calculate joint moments for variation of parameters.

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.75-81
    • /
    • 2003
  • Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.

Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties

  • Mokhtar Ellali;Mokhtar Bouazza;Ashraf M. Zenkour
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.427-437
    • /
    • 2023
  • The objective of this work is to study the wave propagation of an FGM plate via a new integral inverse shear model with temperature-dependent material properties. In this contribution, a new model based on a high-order theory field of displacement is included by introducing indeterminate integral variables and inverse co-tangential functions for the presentation of shear stress. The temperature-dependent properties of the FGM plate are assumed mixture of metal and ceramic, and its properties change by the power functions of the thickness of the plate. By applying Hamilton's principle, general formulas of wave propagation were obtained to plot the phase velocity curves and wave modes of the FGM plate with simply supported edges. The effects of the temperature and volume fraction by distributions on wave propagation of the FGM plate are investigated in detail. The results of the dispersion and the phase velocity curves of the propagation wave in the functionally graded plate are compared with previous research.

INVERSE SHADOWING IN GEOMETRIC LORENZ FLOWS

  • Choi, Taeyoung;Lee, Manseob
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.577-585
    • /
    • 2007
  • We introduce the inverse shadowing property of geometric Lorenz flows and prove that the geometric Lorenz flows do not have the inverse shadowing property.

  • PDF

A Fuzzy Skyhook Algorithm Using Piecewise Linear Inverse Model

  • Cho Jeong-Mok;Yoo Bong-Soo;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.190-196
    • /
    • 2006
  • In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model has been constructed by using piecewise linear damping force model. In this paper, the fuzzy logic control based on heuristic knowledge is combined with the skyhook control. And it is simulated for a quarter car model. The acceleration of the sprung mass is included in the premise part of the fuzzy rules to reduce the vertical acceleration RMS value of the sprung mass. Then scaling factors and membership functions are tuned using genetic algorithm to obtain optimal performance.

An inverse filtering technique for the recursive digital filter model (Recursive 디지털 필터 모델에 대한 역 필터링 기법)

  • Sung-Jin Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.151-158
    • /
    • 2004
  • In this paper, an inverse filtering technique for the digital filter model is proposed. This technique enables us to obtain a stable non-causal m inverse filter by transforming (approximating) it to a causal stable inverse system. In practice, a causal FIR approximation to this inverse filter is proposed. It can be shown that the impulse response of the inverse filter for all-pass systems is simply the mirror image of the impulse response for the system. Specially, due to this symmetric property of the impulse response of all-pass systems, the proposed technique is more useful for all-pass systems than other systems. In order to illustrate the proposed inverse filtering technique, four examples are presented. Two of them are for all-pass filters. The other two examples are for IIR and FIR filters. Also, computer simulations demonstrate that the proposed technique works very well.

  • PDF

Design of an Intelligent Speed Control System for Marine Diesel Engines (선박용 디젤엔진을 위한 지능적인 속도제어시스템의 설계)

  • J.S.Ha;S.J.Oh
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.414-420
    • /
    • 1997
  • An intelligent speed control system for marine diesel engines is presented. The approach adopt¬ed is to use a conventional PID controller for normal operation and a feedforward controller for adaptive control. The feedforward controller is a neural network. The neural network is the inverse dynamics model of the plant, which is being trained on line. The parametric model of the diesel engine is represented in a linear second-order system, with a first-order combustion part and a revolution part each at a normal operating point. The time delay in the control of the com¬bustion part is approximated to the first-order system. The tuned PID parameters are set based on the model for normal operating point. To obtain the inverse dynamics of the diesel engine system, two neural networks are used, one for inverse, the other for forward dynamics. The former is posi¬tioned across the plant to learn its inverse dynamics during operation, and the latter is placed in series with the controlled plant. Simulation results are presented to illustrate the applicability of the proposed scheme to intelligent adaptive control of diesel engines.

  • PDF

Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation

  • Phillips, Brian M.;Takada, Shuta;Spencer, B.F. Jr.;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1081-1103
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) has emerged as an important tool for testing large and complex structures with a focus on rate-dependent specimen behavior. Due to the real-time constraints, accurate dynamic control of servo-hydraulic actuators is required. These actuators are necessary to realize the desired displacements of the specimen, however they introduce unwanted dynamics into the RTHS loop. Model-based actuator control strategies are based on linearized models of the servo-hydraulic system, where the controller is taken as the model inverse to effectively cancel out the servo-hydraulic dynamics (i.e., model-based feedforward control). An accurate model of a servo-hydraulic system generally contains more poles than zeros, leading to an improper inverse (i.e., more zeros than poles). Rather than introduce additional poles to create a proper inverse controller, the higher order derivatives necessary for implementing the improper inverse can be calculated from available information. The backward-difference method is proposed as an alternative to discretize an improper continuous time model for use as a feedforward controller in RTHS. This method is flexible in that derivatives of any order can be explicitly calculated such that controllers can be developed for models of any order. Using model-based feedforward control with the backward-difference method, accurate actuator control and stable RTHS are demonstrated using a nine-story steel building model implemented with an MR damper.

A study on the multivariate sliced inverse regression (다변량 분할 역회귀모형에 관한 연구)

  • 이용구;이덕기
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.293-308
    • /
    • 1997
  • Sliced inverse regression is a method for reducing the dimension of the explanatory variable X without going through any parametric or nonparametric model fitting process. This method explores the simplicity of the inverse view of regression; that is, instead of regressing the univariate output varable y against the multivariate X, we regress X against y. In this article, we propose bivariate sliced inverse regression, whose method regress the multivariate X against the bivariate output variables $y_1, Y_2$. Bivariate sliced inverse regression estimates the e.d.r. directions of satisfying two generalized regression model simultaneously. For the application of bivariate sliced inverse regression, we decompose the output variable y into two variables, one variable y gained by projecting the output variable y onto the column space of X and the other variable r through projecting the output variable y onto the space orthogonal to the column space of X, respectively and then estimate the e.d.r. directions of the generalized regression model by utilize two variables simultaneously. As a result, bivariate sliced inverse regression of considering the variable y and r simultaneously estimates the e.d.r. directions efficiently and steadily when the regression model is linear, quadratic and nonlinear, respectively.

  • PDF