• Title/Summary/Keyword: invariant subspace

Search Result 65, Processing Time 0.015 seconds

TOTALLY REAL AND COMPLEX SUBSPACES OF A RIGHT QUATERNIONIC VECTOR SPACE WITH A HERMITIAN FORM OF SIGNATURE (n, 1)

  • Sungwoon Kim
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.547-564
    • /
    • 2024
  • We study totally real and complex subsets of a right quarternionic vector space of dimension n + 1 with a Hermitian form of signature (n, 1) and extend these notions to right quaternionic projective space. Then we give a necessary and sufficient condition for a subset of a right quaternionic projective space to be totally real or complex in terms of the quaternionic Hermitian triple product. As an application, we show that the limit set of a non-elementary quaternionic Kleinian group 𝚪 is totally real (resp. commutative) with respect to the quaternionic Hermitian triple product if and only if 𝚪 leaves a real (resp. complex) hyperbolic subspace invariant.

Direction-of-Arrival Estimation in Broadband Signal Processing : Rotation of Signal Subspace Approach (광대역 신호 처리에서의 도래각 추정 : Rotation of Signal Subspaces 방법)

  • Kim, Young-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.166-175
    • /
    • 1989
  • In this paper, we present a method which is based on the concept of the rotation of subspaces. This method is highly related to the angle (or distance) between subspaces arising in many applications. An effective procedures is first derived for finding the optimal transformation matrix which rotates one subspace into another as closely as possible in the least squares sense , and then this algorithm is applied to the solution to general direction-of-arrival estimation problem of multiple broadband plane waves which may be a mixture of incoherent, partially coherent or coherent. In this typical application, the rotation of signal subspaces (ROSS) algorithm is effectively developed to achieve the high performance in the active systems for the case in which the noise field remains invariant with the measurement of the array spectral density matrix (or data matrix). It is not uncommon to observe this situation in sonar systems. The advantage of this techniques is not to require the preliminary processing and spatial prefiltering which is used in Wang-Kaveh's CSS focusing method. Furthermore, the array's geometry is not restricted. Simulation results are presented to illustrate the high performance achieved with this new approach relative to that obtained with Wang-Kaveh's CSS focusing method for incoherent sources and forward-backward spatial smoothed MUSIC for coherent sources including the signal eigenvector method (SEM).

  • PDF

Identification of Linear Model for Tandem Cold Mill Considering Interstand Interference (스탠드간 간섭현상을 고려한 연속 냉간압연기의 선형모델 규명)

  • Kim, In-Soo;Chang, Yu-Shin;Hwang, I-Cheol;Joo, Hyo-Nam;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.78-86
    • /
    • 2000
  • This study identified a linear time-invariant mathematical model of each stand of a five-stand tandem cold mill. Two model identification methods are applied to construct a linear model of each stand of the tandem cold mill. For the model identification the input-output data that have interstand interference property in tandem cold rolling are obtained from a nonlinear simulator of the tandem cold mill. And a linear model of each stand is identified with N4SD(numerical algorithms for subspace state space system identification) method based on a state-space model and Least Square algorithm based on a transfer function. Furthermore a modeling error of the tandem cold mill is quantitatively analyzed from a maximum singular value plot of error function between an identified nominal model and uncertain model. In conclusion the comparison of the output signals between the existing Taylor linearized model the identified linear model and the nonlinear model of the tandem cold mill shows the accuracy and the applicability of the proposed identified model.

  • PDF

WEAKLY DENSE IDEALS IN PRIVALOV SPACES OF HOLOMORPHIC FUNCTIONS

  • Mestrovic, Romeo;Pavicevic, Zarko
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.397-420
    • /
    • 2011
  • In this paper we study the structure of closed weakly dense ideals in Privalov spaces $N^p$ (1 < p < $\infty$) of holomorphic functions on the disk $\mathbb{D}$ : |z| < 1. The space $N^p$ with the topology given by Stoll's metric [21] becomes an F-algebra. N. Mochizuki [16] proved that a closed ideal in $N^p$ is a principal ideal generated by an inner function. Consequently, a closed subspace E of $N^p$ is invariant under multiplication by z if and only if it has the form $IN^p$ for some inner function I. We prove that if $\cal{M}$ is a closed ideal in $N^p$ that is dense in the weak topology of $N^p$, then $\cal{M}$ is generated by a singular inner function. On the other hand, if $S_{\mu}$ is a singular inner function whose associated singular measure $\mu$ has the modulus of continuity $O(t^{(p-1)/p})$, then we prove that the ideal $S_{\mu}N^p$ is weakly dense in $N^p$. Consequently, for such singular inner function $S_{\mu}$, the quotient space $N^p/S_{\mu}N^p$ is an F-space with trivial dual, and hence $N^p$ does not have the separation property.

Analysis of Interactions in Multiple Genes using IFSA(Independent Feature Subspace Analysis) (IFSA 알고리즘을 이용한 유전자 상호 관계 분석)

  • Kim, Hye-Jin;Choi, Seung-Jin;Bang, Sung-Yang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.157-165
    • /
    • 2006
  • The change of external/internal factors of the cell rquires specific biological functions to maintain life. Such functions encourage particular genes to jnteract/regulate each other in multiple ways. Accordingly, we applied a linear decomposition model IFSA, which derives hidden variables, called the 'expression mode' that corresponds to the functions. To interpret gene interaction/regulation, we used a cross-correlation method given an expression mode. Linear decomposition models such as principal component analysis (PCA) and independent component analysis (ICA) were shown to be useful in analyzing high dimensional DNA microarray data, compared to clustering methods. These methods assume that gene expression is controlled by a linear combination of uncorrelated/indepdendent latent variables. However these methods have some difficulty in grouping similar patterns which are slightly time-delayed or asymmetric since only exactly matched Patterns are considered. In order to overcome this, we employ the (IFSA) method of [1] to locate phase- and shut-invariant features. Membership scoring functions play an important role to classify genes since linear decomposition models basically aim at data reduction not but at grouping data. We address a new function essential to the IFSA method. In this paper we stress that IFSA is useful in grouping functionally-related genes in the presence of time-shift and expression phase variance. Ultimately, we propose a new approach to investigate the multiple interaction information of genes.