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Abstract

In this paper, we present a method which is based on the concept of the rotation of subspaces,
This method is highly related to the angle (or distance) between subspaces arising in many applic-
ations. An effective procedure is first derived for finding the optimal transformation matrix which
rotates one subspace into another as closely as possible in the least squares sense, and then this
algorithm is applied to the solution to general direction-of-arrival estimation problem of multiple
broadband plane waves which may be a mixture of incoherent, partially coherent or coherent. In
this typical application, the rotation of signal subspaces (ROSS) algorithm is effectively developed
to achieve the high performance in the active systems for the case in which the noise field remains
invariant with the measurement of the array spectral density matrix (or data matrix). It is not
uncommon to observe this situation in sonar systems. The advantage of this technique is not to
require the preliminary processing and spatial prefiltering which is used in Wang-Kaveh’s CSS
focusing method. Furthermore, the array’s geometry is not restricted. Simulation results are
presented to illustrate the high performance achieved with this new approach relative to that
obtained with Wang-Kaveh’s CSS focusing method for incoherent sources and forward-backward
spatial smoothed MUSIC for coherent sources including the signal eigenvector method (SEM).
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I. Introduction

In many applications, the principal angles and
the distance between two subspaces are considered
to find out the relationships between subspaces,
For example, one may take an interest in finding
the intersection of null spaces (or ranges) of given
rectangular matrices and the rotation of subspaces,
and so forth, The problem related to the rotation
of subspaces, the so-called orthogonal procrustes
problem, is to find the orthogonal transformation
matrix which transforms a given matrix into
another given matrix so that the sum of squares
of the residual matrix is minimized. The solution
to this problem has been first proposed by Green
[5]. Green presented a solution to somewhat
less general formulation of the orthogonal pro-
crustes problem which has more stringent restric-
tions in requiring that the matrices are of full
column rank. To overcome this restrictions,
Schonemann proposed an alternate approach
which can be applicable to the matrices which
are of less than full rank. In this approach, a
matrix of Lagrange multipliers is used to solve
the problem which is composed of real
matrices[8].

In this paper, however, a more general method
is proposed for solving the least squares problem
by using Singular Value Decomposition (SVD).
Uniike the Schonemann method, this method
is applicable to both real and complex matrices.
As a typical application of this algorithm, the
direction-of-arrival estimation problem is herein
considered to demonstrate the effectiveness in
solving the spatially close broadband plane waves.

It is often the case that in broadband signal
transmission, the individual narrowband SNR’s
are not sufficient for a resolution of closely
spaced sources., Thus, Wang and Kaveh showed
that high resolution direction-of-arrival estimation
for multiple broadband sources was achieved by
using frequency domain averaging with transfor-
mation matrix [10,11]. In this approach,
preliminary processing and spatial prefiltering are
required to estimate an initial angle .of the
source directions and separate the groups of
sources under the assumption that a knowledge
of the neighborhoods of these initial angles is
sufficient to effect the advantage of broadband
signal processing.  Furthermore, Cadzow has:
recently proposed the signal eigenvector method
(SEM) which has a superior performance relative
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to MUSIC in conjunction with Wang-Kaveh’s
CSS focusing method{1]. The signal enhance-
ment approach has been also proposed to improve
the performance for resolving the closly spaced
broadband plane waves [7]. When multi groups of
plane waves impinge on an array of sensors,
however, those approaches need at least a good
estimator for the initial angle estimates of each
group of sources.

The rotation of signal subspace (ROSS)
algorithm proposed in this paper is developed
without appealing to preprocessing and spatial
prefiltering. The main difficulty in developing
signal subspace processing for broadband sources
arises from the fact that the signal subspace at
one frequency is different from that at another
frequency, Thus, the proposed approach con-
structs a common signal subspace by using a
unitary transformation matrix which represents
the rotation of signal subspace at the other
frequency into a single one, This technique is
applicable to the situations in which the noise
field remains invariant while the signal field
changed in the direction of arrival of sources.
Under this circumstances, the proposed method
provides the effective direction-of-arrival estim-
ation while Wang-Kaveh’s method takes the
several degradation such as bias and poor
resoution without spatial prefiltering.

II. Signal Model Formulation

A standard approach to signal processing
problems entails formulating a model for the
process that gives rise to the data being analyzed.
For the direction-of-arrival problem, the underly-
ing plane wave direction vectors are obtained by
modeling the delay pattern across the array’s
sensors. Let us now consider an array of M
omnidirectional sensors which is receiving N
incident plane waves traveling in directions K,
Ka, ..., Kn Wwith associated envelope signals f, (t),
f5(t), ..., fn(t) where k designates real 3 x 1 unit
vector. Apﬁealing to the principle of superpos-
ition, the mt array sensor is specified as

Xm(w)= i Fn((u) e/fn ol worwTnm)
n=1

for 1 <m<M (1)

where w is a center frequency, w is a baseband
frequency and Fn(w) and ¢n denote the Fourier
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transform of the ath envelope signal fn(t) and
phase angle, respectively., The parameter ‘rn(m)
corresponds to the delay which ‘the nth plane
wave is received at m— sensor relative to the origin
of three space and is given by

Tn(m) “Kn - Zm/c

for 1<m<Mand 1<n=N (2)
where z s a 3 x 1 vector representing the
location of mth sensor, K . z  denotes the stan-
dard vector inner product in real threc space and
¢ .is a propagation velocity. These delay para-
meters are fundamental to the direction-of-arrival
problem since they characterize the combined
array geometry-incident plane wave direction-of-
arrival information,

In the analysis to follow, a vector space
approach is taken for analyzing the direction-of-
arrival problem and forming an algorithm for its
solution, With this objective in mind, let us express
the relationship (1) in the M x 1 spectral snapshot
vector format

x(w) =X (w), X, (@), -, Xu (@)]" (3)

The lower case letter x(w) (instead of X(m)) is
here used to designate a vector quantity in keeping
with standard vector notation and the prime
symbol (T) denotes vector transposition. From
relationship (1) it is seenthat these sensor signals
are linear combination of the spectral envelope
signal terms Fn(w). exp(j(bn), It is then con-
venient to express this linear combination as

x (@) =S (0)f(w) (4)

In this expression, f(w) is the N x 1 spectral
envelope vector as.given by

flo)=(F,(w) rexp(§1), Fs (@) -exp(j o), -,
Fy(w) rexp (o))" (5)

The M x N composite steering matrix S(w)
appealing in representation (4) plays a prominent
role in the development to follow and its columns
are composed of the M x 1 steering vectors

— W+ Wg) Tp(l) (W+ Wo) Tn(2
§(w,,£n)_[e1( o) Tnl s e’ o) n"’---,

s tn\N)JT (6)

(1120}

The nth steering vector is associated with the nth

incident plane wave and is a function of the delay
terms rn(m) which from expression (2) are seen
to be dependent on both the array’s geometry and
the plane waves direction vector K .. It is for this
reason that the steering vector is expressed as an
explicit function of the plane wave’s direction
vector, :

In most practical applications, the measured
sensor signals are corrupted by environmental
noise and- instrumentation error, If this corrup-
tion enters in an additive fashion, the measured
sensor signals are modeled as

x(w) =S (w) {(w) +7{w) (7)

in which the mth element of the M x 1 noise
vector n(w) designates the Fourier transform of
the m®™ sensor noise signal nm(t).

A particularly insightful and useful tool for
estimating the number of incident plane waves
and their direction-of-arrivals is provided by the
second order statistics of the array’s spectral
snapshot vector, It is assumed that the plane
wave signals and additive noises are zero mean
widesense stationary complex-valued random pro-
cesses which are pairwise uncorrelated. The spatial
spectral density matrix Px(w) is formally specified
by

Px(w) =E {x(w)x ()" (8)

where ‘E’ and ‘*’ designate the expected value and
complex conjugate transposition operators,
respectively.

Upon the substitution of expression (7) into
the relationship (8), the spectral density matrix
is expressed as

Py(w) =S (w) B, (w) S (w)*+ 0% (w) Prlw) (9)

The N x N envelope spectral density matrix Pf(w)
appearing in this expression is given by

P,(w) =E {f (w) f (w)*} (10)

and characterizes the second order statistical
relationship between the N incident plane wave
envelope signals taken as pairs at frequency w.
The N envelope signals are said to be pairwise
noncoherent at frequency w if the rank of Pf(w)
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equals N. On the other hand, if the rank of Pf(m)
is less than N, this indicates that a subset of the
envelope signals are coherent at frequency w.
The M x M noise spectral density matrix az(w)
P,n(w) appearing in expression (9) is specified by

0" (w) Polw) =E {1(w)1(w)* 11

In what is to follow, it is assumed that the noise
spectral density matrix p,(w) is known and has
been normalized so that its trace equals M but
that the noise power level oz(w) is unknown,

M. Generalized Eigenanalysis

In recent years, eigenvalue-eigenvector decom-
position has become an important mathematical
analysis for direction-of-arrival estimation pro-
blem, Using the definition of the generalized
eigen-characterization of the matrix pencil (Py(w),
Py (w), we have

Px(w)em (@) = Am (@) Pr(w) em (@)
for m=1,2,---, M (12)

or

Px () E (w) =P»(w) E (w) A (w) (13)
where

E(w) =(e.(w), e:fw), -, en(w)]

Alw) =diag (A (w), A2 (@), =, Au(@) ],
Ax (w) _>_/12 (w) = "'ZAM ((U) = 0

and the spectral density matrices Px(w) and p,(w)
are the MxM Hermitian positive semidefinite
matrices. The Am(w) scalars are called eigenvalues
while the gm(w) are M x 1 (generalized) eigenv-
ectors, The eigenvectors are normalized and
have the following properties, that is,

Pn»(w) —orthogonal : e, (@) *Py(w)en (@) =8(1—m)
Py (w) —orthogonal : e, (w) *Prlw)em(w) =

Am ()8 (1—m)

where the Kronecker delta sequence 6(1-m)
equals one for 1= m and is otherwise zero [9].
From this analysis, a fundamental theorem is now

given.
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Theorem 1. Let the MxN composite steering
matrix S(w) have rank N, the N x N envelope
spectral density matrix Pf(w) have rank K where
K < N, and the M x M noise spectral density
matrix Pnp(m) have rank M. It then follows that the
eigenvalues as specified in relationship (12) are
distributed as

A (w) = A (@) = 2 A (@) > A (@) ==
/\M (w)=¢f ((u) (14)

A proof of this theorem is readily obtained
from the substitution of Eq.(9) into Eq.{13) and
the fact that Pt(w) has rank K.

IV. Rotation of Subspaces

Let us first consider the rotation of one dimen-
sional subspace in three dimensions. It is shown
from figure 1 that a subspace Yy, can be rotated
into a subspace Ya with the orthogonal transfor-
mation T since both sets of points can be made
collinear where Ya and Yb are one-dimensional
subspace spanned by a vector a and b, respectively.
It is noted that T can be selected so that {[ a-Tb [l
is minimized and T preserves the norm of vector.

T2

Fig.1. Rotation of one-dimensional subspace
into the other one in three dimensional
space.

This concept allows us to extend our geometric
intuition to higher dimensions. The possibility
that a subspace can be rotated into the other one
is examined in the following theorem.

(1121)
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Theorem 2. Let A, B denote given matrices
contained in the vector space C™XD of all m xn
complex matrices. Then the optimal unitary
transformation matrix T which minimizes || A-

TB ||F subject to T*T=TT* = I, can be given by
T=VU*
where || « || is Euclidean or Frobenius norm of

matrix which is used as the distance measure, and

BA*=U2X V*
Uz[‘ﬂnljz,"'yﬁm], V=[Y.,\Q,"',Ym]
S=diagloy, 02, ", 0m) where o, =g, = >0,=0

in which the Iy ‘s are real nonnegative singular
values which are ordered in the monotonically
nonincreasing fashion o, >Uk+1 and the y, and
Vi are the corresponding m x 1 orthonormal left
and right singular vectors, respectively {4].

The proof is given in [6] and it is to be noted
that T is not unique for the rank deficient matrix.
Based on the theorem 2, the following observation
can be made.

« The mapping T:R(B)->R(A) represents a rot-
ation of the range of B into that of A as closely
as possible, possibly preceded by a reflection in
some hyperplane.

« If A isequal to B, then T is the identity matrix.
The simple proof is shown in that V is equal
to U since BA¥* is Hermitian positive semide-
finite matrix.

« If B is equal to identity matrix, then this
problem is established as the orthogonalization
of A.

It is to be noted in this optimization problem
that the normalized error |} A-TBIIF/ llA—BIIF may
be relatively large even though R(A) matches
R(TB) perfectly. This case results from the fact
the unitary transformation matrix T provides
the invariant norm, that is, || TB||F= IIBHF.

The relationships between the normalized
error and the matching of subspaces can be clearly
explained by considering the distance (or angle)
between two subspaces in terms of the orthonor-
mal basis of subspace [6].

From the preceding discussion, it is apparent
that the unitary transformation matrix can be
optimally selected in order to rotate one subspace
into the other one. We shall now consider whether
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this idea is effectively applicable to a signal
subspace approach employed widely for direction-
of-arrival estimation of multiple broadband plane
waves,

V. Rotation of Signal Subspaces

The fundamental least-squares problem can
now be formulated.
~ Least Squares Problem: Given the composite
steering matrix S(w c) and S(w) develop a
procedure for selecting T (m m;) which minimizes
i S(w,) T(w, w) S(wj) ll for j=1,2, ..., J,
where J is the number of frequency subbands and
we is a frequency at which a common signal
subspace is constructed. It is assumed that the
number of incident plane waves N is unknown
but that the plane wave direction-of-arrivals are
such as to ensure that the MxN composite steering
matrix S(w) has full rank N,

To solve this least-squares problem, S{w ) and
S(w ) should be known to select T(w W ) fOl']—
, J. Those matrices, however, are unknown

1,_,.
to the processor. The focusing method, which has
been proposed by Wang and Kaveh, is derived by
using preliminary processing and spatial prefilter-
ing in order to estimate an initial angle of
source direction and separate the groups of
sources, Specifically, two drawbacks of CSS
focusing method are considered as follows

(1) it requires preliminary processing which
can provide at least a good estimate of the
direction-of-arrival before it can be applied.
spatial prefiltering is required when some
group of sources are far from the initial
estimates obtained from preliminary proc-

essing

(2)

We shall now propose an effective procedure
which doesnot require any preprocessing in order
to find the transformation matrix T(w w)
Furthermore, this is applicable to general array
geometries.

Rotation of Signal Subspaces Algorithm

It is first assumed that the MxN composite
steering matrix S(w) has rank N and the NxN
envelope spectral density matrix Pg(w) has rank
K, where K <N,
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Corollary 3. Let d(w.) and d(w;) be given noise-
free spectral snapshot vectors at f]requency we and
wj, respectively, Then an optimal transformation
matrix which minimizes E{l| dw, )-T(w w) d
(w )” } subject to T(w W »*T (w w) 1
can be expressed as

MxM

T (we, @,) =V (we, w,) Ulwe, w,)*

where
E {(_i(wj) Q(WC) *h= W, w,) Zlwe, w:)v(wC; w,)*
d(w) =S (o) f ()

in which I denotes the MxM identity matrix,
The proof ls readily illustrated inf6]. It follows
from the corollary 3 that
The constraint of the unitary matrix T(wc, wj)
is used to preserve the sensor power at freg-
uency w; (i.e, IT(wg, w;) d @l=lldeil).
T(w w;) can be conmdered as the transform-
atlon matrix achieved by the rotation of
(1) N-dimensional signal subspace for N non-
coherent (or partially coherent) sources.
(2) K-dimensional signal subspace for some
coherent sources (rank of Pd{m) =K <N).
(3) 1-dimensional signal subspace for perfect
coherent sources.

The effect of ROSS algorithm is that of transfor-
ming random vector __)g(wj) into the random vector
X(""c"’*’j) where

¥ (we, 0;) =T (we, w,)x(w;) (15)

Taking the average of the weighted spectral
density matrix of the random vector y(w,, wj),
Py(“"c) is expressed as

Py(wc)_ Z WJ { (wC. w/))’(wc, (U;) ) } (16)

where w. is a normalized weight proportional to
j frequency band’s SNR. Substituting Eq. (15)
into Eq. (16),

Py(we) = élW;T(wc, w,) Pe(w,) T (wo, w)* (17)

Since transformed vector y(w,, wj) is assumed to
theoretically belong to the signal subspace at
frequency W, which is the column space of

(1123)
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S(w,), y(w,, w;) corrupted by noise can be
modelled as follows

¥ (w¢, w,) =S (we) a (we, w,)} + T {we, w,) 7 (w,)
(18)
where a(w,, w;) is the Nx 1 random vector which is
determined by T(wc, w;) and f(w.). Upon the

substitution of expression (18) into expression
(16)

Jwd) = 5w, S (@O E fa(we @)a (we ©)*) S (we)*

4 ;: w, T (we, @) E {7 (w,) 7(0)* T(we, w)*

(19)

Rewriting relationship (19) under the assumption
that the sensor noise has the same power in the
all frequencies.

Py(ﬂ)c) =S (wc) Pay (wc) S (wc) *+ Uzpny(wc)
(20)

where
J
Pay(we) = J);‘ w, E {a(we, w)alwe, o)

J
Pny(wc)z ;;1 W, T(wc, wj) Pn(ﬁ)J)T(wc, w,-)*

Since expression (20) has the same array model
form as expression (9) at the frequency band
W, a generalized eigenanalysis of the matrix
pencil (Py(wc), Pny(wc)) is now made as follows

Py(wc) €m (wc) =Am ((Dc) Pny(wc) €m (WC)

for m=1, 2---'M (21

Upon the substitution of expression (20) into
the relationship (21) ,it follows from Theorem
1. that

S (we) Pay{we) S (we)*=0 for K+1<m=<M
S (wC) Pay ((UC) S (CUC) * = (Am ((Uc) - ‘72) Pny(wc) €m (wc)
for 1 <m<

Thus, it is clear that the signal eigenvectors associ-
ated with the K largest eigenvalues satisfy a linear
relationship of the form
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M=

ay (n) s {we, xn) for 1<k=<K

(22)

Pn_v(wc)ﬁ—‘k (CUC) =

-3

where s(w, K ) is the Mx1 steering vector as
specified in expression (6). The relationship (22)
is a basic idea of the signal eigenvector method
(SEM) and a general solution procedure is given
in [1,2].

VI Practical Considerations

Let us consider a set of sampled array sensor
signals

Xm (1), xm(2), =xm (L), for I<Sm=<M (23)
with these samples being made over a interval of
T seconds so that the uniform sampling rate is
L/T samples per second. Using this raw data, it
is then desired to estimate the array spectral
desnity matrix Py (w). To effect this estimate,
let these array sensor samples be subdivided into
q equal subintervals each of duration AT=T/q
seconds.

If AT is sufficiently large and decomposed
components x(w.) are uncorrelated, the array’s
spectral density matrix Px(wj) of jth frequency
wj is then approximately given by

Pylw;) =q* él *(w,) xk(w,)* for 0<j<N;—1
(24)

in which m-=21'rj/NT [1, section IX]). It is noted
that under the assurhption that x(w:) is a zero
mean normal random vector, the maximum
likelihood estimate of Px(w-) is given by this
expression [3]. In using ROSS algorithm to
estimate the unitary transformation matrix, the
set of narrowband components for which the
SNR is deemed sufficiently large is used. Let w?!,
w2, , wJ designate the set of frequencies
within the signal bandwidth. The array’s spectral
density matrix estimates are given by

s

Py(w') =q" é, *(0’) x* () * for 1<j <] (25)

To estimate the transformation matrix for the case
in which the noise field remains invariant with the
measurement of array data matrix in the active
system, the spectral snapshot vector is measured as

1989%F 77 BT ITHBEFKE
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& o') =x" (') — 7 (") (26)
In a similar fashion to expression (25) , Pd(wc,
w)= E(d(w?) d(w)*) can be estimated as

Eld(@)d@d* =q7 5 ¢ (@)d @)* @)

in which J is the number of frequency bands to
be analyzed.

VI, Simulation Experiments

To examine the effectiveness of the proposed
ROSS algorithm relative to Wang-Kaveh’s focusing
method, forward-backward spatial smoothed
MUSIC[12] and signal eigenvector method (SEM)
in conjunction with focusing method, two cases
are. considered. One is for the case of three
perfect coherent sources incident on a linear
equally spaced array while the other is for resolv-
ing three incoherent sources incident on a
linear unequally spaced array. In testing focusing
method, initial angle is assumed to form the
transformation matrix and no spatial prefiltering
is used in order to process under the same con-
ditions as that of ROSS algorithm. Furthermore,
the transformation matrix of focusing method is
treated as the diagonal form of a matrix since it
is empirically found to perform much better than
the other matrix [11}. The signal considered is
the zero mean stationary bandpass white Gaussian
random process of which a center frequency is w o
100 Hz and bandwidth is 40 Hz, The sensor noise
vector 71 (t) is taken as a complex valued additive
bandpass white Gaussian process which has the
same bandwidth as signal. Its components have
identical variances and are statistically indepen-
dent of the envelope signals. The uniform
sampling frequency is chosen to be 80 Hz and the
numbers of snapshots is taken to be L=3840 (ie.,
T=48 sec.). The total observation time is divided
into g=30 segments with each segment (AT=1.6
sec,) being decomposed into J=33 narrowband
components within the signal bandwidth. A
frequency ¢ ¢ for constructing a common signal
subspace is chosen to be a center frequency
(.e., wc=wo). To obtain a measure of statistical
repeatability, ten independent generations of the
spatial spectral density matrix estimates are made
and the bearing estimates are plotted in superim-
posed fashion for both cases.
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Case 1: 3 perteat coherent sources.

In this example, the array is taken to be linear
and composed of M=16 uniformly spaced sensors
with a sensor spacing d=cw/ wy where w, is a
center frequency and c is a propagation velocity.
The sensor noise variance is selected so that the
two signal-to-noise ratio(SNR) levels of 0 dB and
-8 dB is obtained. The seven subarrays are taken
with the each subarray’s size being ten in order
to use a spatial smoothed MUSIC. In employing
SEM, the effective rank of the modified spectral
density matrix Py(wc) is selected tg be one. The
initial angle is estimated as 79.5 for focusing
method. The resultant bearing estimates are
shown in figure 2. It is shown from figure 2 that
forward-backward spatial smoothing with focusing
method is unable to resolve consistantly the three
incident coherent plane waves at 0 dB and -8
dB. Although not shown, this approach is unable
to resolve three perfect coherent sources in a high

Forward-Backward
Spatial smoothing
(Initial angle=79.5%)

SEM with focusing
(Initial angle=79.5°%)

Paper's method

SNR 0dB

. Ten statistically independent superimposed
bearing estimates for three perfectly
coherent incident plane waves at bearing
angles of 66.5°, 78° and 81°. These
estimates were obtained using a 16 ele-
ment linear uniformly spaced array that
had a spacing of d=A./2.

Direction-of - Arrival Estimation in Broadband Signal Processing: Rotation of Signal Subspaces Approach
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SNR setting since the source at 66.5° has an
undesirable effect of resolution of two spatially
close sources. In the SEM with focusing method,
a relatively lage bias is made at 78° in even high
SNR and some of ten trial runs shows poor
resolution at SNR -8 dB, On the other hand, it is
seen that the proposed algorithm is able to
effectively detect three coherent sources at each of
SNR levels without appealing to initial angles, To
compare the performance in terms of sampled
bias, sampled standard deviation (STD), and mean
squared error (MSE), thirty statistically indepen-
dent trials are made. It is seen in Table 1 that the
paper’s method provides better performance than
the other two methods.

Case 2:3 incoherent sources

The linear unequally spaced array is taken to
be composed of M=11 sensors with a sensor
spacing unit d=2c7 /3w, The sensors are located
in

Wang-Kaveh's
Focusing method
(Initial angle=62.5%)

SEM with focusing
(Initial angle=62.5°)

SNR 1048 SNR -10dB

Fig3. Ten statistically independent superimposed
bearing estimates for three incoherent
incident plane waves at bearing angles of
60°, 65° and 85°. These estimates were
obtained wusing a 11 element linear
unequally spaced array that had a spacing
of d= A /3,
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z,=(-2.5, 0.0)7 z,=(—0.6, 0.0)7
z,=(0.0, 0.0)T z=(2.1, 0.0)7
z;=(3.5, 0.0)]  z=(5.6, 0.0);
z;=(6.3, 0.0); z=(7.1, 0.0)]
2,=(8.4,0.0)7 z,=(10.2, 0.0)7
z,=[(11.7, 0.0)7

The simulation is performed with the two SNR
of 10 dB and -10 dB. The effective rank of
modified spectral density matrix is estimated to
be three for both focusing method and ROSS
algorithm and initial angle is estimated as 62.5°
for Wang-Kaveh’s focusing method. Upon com-
paring the bearing estimates shown in figure 3,
Wang-Kaveh’s method fails to detect consistantly
two spatially close plane waves at SNR -10 dB
while the proposed algorithm is better than SEM
with focusing in terms of resolution and bias at
SNR -10 dB. Table 2 is also given to examine the
comparison of performance after thirty indepen-
dent trials.

VII. Conclusions

ROSS algorithm proposed herein has the
desirable attributes of providing high resolution
performance without appealing to preliminary
processing and spatial prefiltering when this
approach is applied to the situation in which the
noise field remains invariant with the measure-
ment of array snapshot vector. The proposed
approach is applicable to general array geometries.
1ts performance has been found to be at least as
good as that of focusing method and especially
better in terms of bias and resolution when some
sources are not in the neighborhood of the other
groups of sources. The method which can be
applicable to general situation (e.g., passive
systems) is currently under study.
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